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ABSTRACT

This paper investigates the role of the linear analysis step of the ensembleKalmanfilters (EnKF) in disrupting

the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter

(PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering

problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors

of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and

the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a com-

paratively fast gravity wavemode. It can also be configured either to evolve on a so-called slowmanifold, where

the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying

variables as slavedmodes. Identical twin experiments show that EnKF and PF capture the variables on the slow

manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the

EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform

significantly better in the fully coupled nonlinearmodel where fast and slow variablesmodulate each other. This

suggests that the analysis step in the PFsmaintains the balance in both variablesmuch better than theEnKF. It is

also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact

on the EnKF after a sufficient number of members have been used.

1. Introduction

The quality of the forecasts of the state of the atmo-

sphere and ocean depends on the accuracy of the solutions

of the partial differential equations (PDEs) describing

these systems. Various data assimilation techniques have

been developed over the last three decades to improve

upon these solutions of the PDEs and to constrain the

solutions to the ever-increasing number of observations.

This helps in reducing the uncertainties in the forecast

of these highly chaotic systems. The most popular data

assimilation schemes in operational forecasts are the

four-dimensional variational data assimilation (4DVAR)

approach (Lewis and Derber 1985; Le Dimet and

Talagrand 1986) and the ensemble Kalman filter (EnKF)

approach (Evensen 1994; Tippett et al. 2003) and its

variants (Ott et al. 2004; Mitchell and Houtekamer

2000; Song et al. 2010). More recently, approaches

that are a hybrid of 4DVAR and EnKF (Hamill and

Snyder 2000) are being tested in operational data as-

similation systems to improve upon the errors of each

method.
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The oceanic and atmospheric systems have multiple

scales of dynamics interacting nonlinearly in time and

space. For instance, the atmospheric system varies on

time scales from climate to weather. The weather is

fast varying, nonlinear, and chaotic and is known as an

initial-value problem, whereas the climate is slowly varying

and is known as a boundary value problem (Lorenz 1991).

Ocean physics also involves multiple processes on multiple

scales, from a few millimeters to thousands of kilometers

in space and from seconds to decades in time. These are

characterized by small-scale turbulent processes,mesoscale

variability, and decadal and climate changes, all inter-

acting with each other (Robinson and Lermusiaux 2004).

4DVAR and EnKF-based assimilation schemes have

addressed the problem of forecasting multiscale systems

to some extent. They have many associated problems

with regard to the nonlinearity of the models and as-

similating observations with dynamics at various time

scales andmeasures of nonlinearity (Bennett 2002; Hoteit

et al. 2005a; Van Leeuwen 2010). In meteorological and

climatological applications, ‘‘balance’’ generally refers to

the dominance of slow vortical motion over fast inertia–

gravity waves. In multiscale systems like the ocean or at-

mosphere in which modeled flows in certain regimes are

expected to be balanced, it has been found that current 4D

data assimilation techniques, as the EnKF and 4DVAR,

could cause the excitation of spurious unbalanced mo-

tion (Polavarapu et al. 2000; Houtekamer and Mitchell

2005; Neef et al. 2006). This has been known to happen

because of the development of unphysical correlations.

Solutions to this problem have been attempted by im-

posing balance constraints on the analysis (Courtier and

Talagrand 1990; Dee 1991; Todling and Cohn 1994;

Polavarapu et al. 2000; Kepert 2004) or by filtering out

fast modes. Imbalance in the flow due to the assimilated

data cannot be completely corrected for even with such

adjustments (Neef et al. 2009). Gershgorin and Majda

(2010) show that a linear Kalman filter (KF) with model

error performs better than an exact nonlinear extended

Kalman filter (NEKF) for large-enough observation times

in a nonlinear slow–fast system, yet they also show that

the NEKF is stable for the case of strong fast forcing and

hence for strong non-Gaussianity, unlike the linear KF.

The application of theEnKF is still largely in a discussion/

testing phase (Lorenc 2003; Houtekamer and Mitchell

2005). The ability of this method to capture unbalanced

motion is, however, still poorly understood (Neef et al.

2009). Szunyogh et al. (2005) is an example of a case in

which an EnKF-type assimilation method was able to

capture a fast-varying gravity wavemode that was present

in observations and not in the model forecast, indicating

that flow-dependent covariance models can potentially

capture unbalanced motion. Neef et al. (2006) reported

similar results where the EnKFwas able to provide better

estimates of the fast-varying modes than the linearized

(extended) Kalman filter. Other techniques such as scale-

dependent modeling and assimilation using the ensemble

Kalman filter have been attempted (Zou and Ghanem

2005) in engineering applications. This would be a more

appropriate solution if the coupling between the scales

were not highly nonlinear and chaotic as in the ocean or

atmosphere dynamics.

4DVAR and the EnKF are equivalent when the sys-

tem is Gaussian and linear (Kalnay et al. 2007), but both

do not fully address the nonlinear estimation problem

(Van Leeuwen 2010). The 4DVAR solution requires solv-

ing a nonconvex optimization problem while the EnKF

analysis is still based on the linear correction step of the

Kalman filter (Le Dimet and Talagrand 1986; Anderson

2001; Hoteit et al. 2008). For nonlinear data assimilation

problems, the optimal solution is believed to be the so-

lution of the Bayesian estimation problem, which involves

the estimation of the conditional probability distribu-

tion function (PDF) of the system state given all avail-

able measurements up to the estimation time (Doucet

et al. 2000). Knowledge of the state PDF allows for the

determination of different estimates of the state, such

as theminimum variance (MV) estimate (Todling 1999).

The particle filter (PF) uses point-mass representation

of the state PDF to provide a discrete approximation of

the optimal nonlinear filter (ONF) (Doucet et al. 2000).

In the PF, the particles are integrated forward with the

numerical model to propagate the state PDF in time,

and their assigned weights are updated every time new

observations are available. The PF, however, suffers from

the degeneracy phenomenon of its particles when most

weights become concentrated on very few particles. Tack-

ling this problem would require using resampling and a

particle ensemble size sufficient to capture the effective

state dimension (Snyder et al. 2008) of the assimilation

system (Doucet et al. 2000). To alleviate this problem,

Evensen (1994) proposed the EnKF while replacing the

weight correction step by the linear Kalman correction

step for each particle. This was shown to significantly

enhance the robustness of the filter and allowed the im-

plementation of the Bayesian filtering theory with small

size ensembles of particles (Kivman 2003; Hoteit et al.

2008; Van Leeuwen 2010).

Despite recent successful implementations of the

EnKF with various atmospheric and oceanic assimila-

tion problems (Houtekamer and Mitchell 2005; Hoteit

et al. 2005b; Pu and Hacker 2009), it is still not clear to

what extent the linear correction step affects the accuracy

of the filtering solution. Kivman (2003) compared the per-

formances of the EnKF and the PF for the parameter

estimation problem and found that the linear correction
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step of the EnKF fails to provide accurate estimates of

the system parameters because of the strong nonlinear

relation between the parameters and the observations.

More recently, Jardak et al. (2010) compared the per-

formances of the same filters in the presence of linear

and nonlinear observation operators and concluded that

the nonlinear filters are superior in the latter case. In this

work, we are interested in assessing the impact of the

linear correction step on the estimation of the different

scales of the studied system. Following Neef et al. (2006),

we address this problem using the simplified dynamical

model of Lorenz (1986) (the model is hereafter called

the Lorenz-86 model), which admits one nonlinear vor-

tical mode and one inertia–gravity wave. We study the

performance of the linear-based EnKF and two kinds of

nonlinear filters, the sequential importance resampling

filter (SIRF) and the sequential kernel resampling filter

(SKRF). A similar problem has been considered by

Neef et al. (2006), but studying the impact of lineariza-

tion in the extended Kalman filter versus the ensemble

approach, and by Neef et al. (2009), studying the impact

of flow-dependent covariance evolution in the ensem-

ble KF versus a static covariance model in an optimal

interpolation (OI). In the Lorenz-86model, we aremainly

investigating whether the EnKF fails to capture the non-

linear coupling between the slow variable and the fast

variable because of its linear correction step. This cou-

pling between the slow and fast variables is preserved in

the analysis state estimate of the PFs, and hencewe show

that they perform better in preserving the balance in the

model as compared to the EnKF. When the dynamics

lies on the slow manifold, we show that the EnKF per-

forms as well as the PFs since the dynamics is approxi-

mately linear. We are particularly interested to see if the

nonlinear correction step captures the fast-growingmodes

better compared to the EnKF and, if so, whether it still

maintains the improvement in the analysis of the slow-

evolving mode. The second focus is to study the behav-

ior of two different nonlinear filters compared to the

EnKF for data assimilation in this model with varying

observation frequencies and varying scales.

In the first set of experiments of this study we will

evaluate the performance of the three different filters in

the slow manifold framework of the Lorenz-86 model.

The model is configured in the slow manifold with the

fast modes set to zero and only the slowly varying vor-

tical mode evolving in time. We test and show that the

EnKF performs well compared to the two types of parti-

cle filters. In the second set of experiments we address the

balanced flow problem, or flow where the vortical mo-

tion dominates and the inertial/gravitational motion is

‘‘slaved’’ to the dominant vortical mode flow. In the third

set of experiments we will evaluate the accuracy of the

three different filter analyses with a fully nonlinearmodel

with the slowly varying vortical mode coupled to the fast

inertia–gravity wave mode and each of them evolving in

time independently.

The paper is organized as follows. The algorithms of

the ensemble Kalman filter and the two types of particle

filters are described and their characteristics compared

in section 2. Section 3 describes the different configu-

rations of the extended Lorenz-86 model used in these

experiments. The experimental setup describing the differ-

ent model configurations and observation schemes used

for experiments are presented in section 4. Section 5

contains discussion and conclusions.

2. Linear and nonlinear Bayesian filtering

The Bayesian filtering approach is presented first and

then approximations for its Monte Carlo implementa-

tion are presented in the forms of the PF and the EnKF.

To describe the Bayesian filtering algorithm, consider

the following nonlinear stochastic discrete-time dynami-

cal system:

xk5Mk(xk21)1hk, (1)

yk5Hk(xk)1 �k, (2)

where xk is the state vector (to be estimated), of di-

mension n; yk is the observation vector, of dimension p;

Mk and Hk are two continuously differentiable maps

from R
n to R

n and from R
n to R

p, respectively repre-

senting the transition and the observational operators;

and hk and �k denote the dynamical and the observa-

tional noise, respectively. The conditional distributions

of hk and �k, given x0, . . . , xk, are assumed to beGaussian

with zero mean and nonsingular covariance matricesQk

and Rk, respectively.

Starting from a random initial condition with a known

probability density function, the Bayesian filter provides

the conditional density function of the system state

given all available measurements up to the estimation

time. To simplify the notation, we define y1:k as a short-

hand for the set of observations y1, . . . , yk previous to

time tk. Let p
f
k(�jy1:k21) be the conditional (predictive)

density of xk given y1:k21 and pak(�jy1:k) be the condi-

tional (analysis) density of xk given y1:k, both determined

at time tk. The Bayesian filter recursively operates with

a succession of prediction and correction steps as sum-

marized below. The reader is referred to Doucet et al.

(2000) for an extensive description of the filter.

d Prediction step: The predictive density p
f
k(�jy1:k21) is

obtained by integrating pak21(�jy1:k21) with the model
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(1) to the time of the next available observation tk. The

conditional density of the state vector xk to be at x at

time tk given that it was at u at time tk21 isf[x2Mk(u);

Qk], where

f x;Sð Þ5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2pSð Þp exp

�
2
xTS21x

2

�
(3)

denotes the Gaussian density of zero mean and co-

variance matrix S. It is emphasized that this forecast

procedure is valid for discrete time formulations. Thus,

p
f
k(x j y1:k21)

ð
R

n
f[x2Mk(u);Qk]p

a
k21(u j y1:k21) du .

(4)

d Correction step: After a new observation yk is made,

the analysis density pk(�jy1:k) at time tk is determined

by ‘‘correcting’’ the predictive density with the new

observation using the Bayes rule,

p
f
k(x j y1:k21)5

1

bk
p

f
k (x j y1:k21)f[yk2Hk(x);Rk] . (5)

The analysis density is therefore obtained by multi-

plying the prior predictive density by the observation

density and normalizing by bk5
Ð
R

np
f
k(u j y1:k21)f[yk 2

Hk(u);Rk] du to ensure a probability density.

While the expressions of the state PDF can be easily

obtained, determining the value of the predictive den-

sity at each point of the state space is practically im-

possible for large dimensional systems (Doucet et al.

2000). This actually requires the evaluation of the model

Mk(x) for a prohibitive number of values of x, knowing

that even one single evaluation can be computationally

prohibitive in realistic atmospheric and oceanic appli-

cations (Snyder et al. 2008). The particle filter and the

ensemble Kalman filter are two discrete approximations

of the Bayesian filter. Here we describe the character-

istics of these two Monte Carlo implementations of the

Bayesian filter.

a. The particle filter

The PF provides a discrete solution of the Bayesian

filtering problem using point-mass representations

�N
i51widxi , of the state PDFs (Doucet et al. 2000). The

vectors xi are called particles and the wi are their as-

sociated weights; N is the number of particles (or the

size of the ensemble). After a forecast or analysis step,

the minimum variance estimate of the system state is

then obtained as the weighted average of the ensemble

�N
i51w

ixi. Starting from an initial ensemble of particles

xi0, i5 1, . . . ,N, the PF algorithm consists of a prediction

step to integrate the particles in time and a correction

step to update the weights as follows:

d Prediction step: At time tk21, the particles xik21 are

integrated forward with the model to the time of the

next available observation tk.
d Correction step:The new observation is used to update

the weights with

wi
k5

1

ck
wi
k21f[yk 2Hk(x

i
k);Rk] , (6)

where ck is a constant normalizing the total weight.

The particles remain unchanged. Thus a particle re-

ceives more or less weight proportional to its distance

from the most recent observation normalized by the

observational error covariance matrix Rk.

In practice, the PF suffers from a major problem

known as the degeneracy phenomenon (Doucet et al.

2000); after several iterations most weights become con-

centrated on very few particles. This happens because

the particles drift away from the true state with the ob-

servations exerting no feedback on the particles. The

‘‘effective’’ size of the ensemble as described by Snyder

et al. (2008) decreases over time and after a few assim-

ilation steps only a small fraction of the ensemble con-

tributes to the filter solution, causing very often the

divergence of the filter. Resampling was introduced as

a way to get around this problem. This Monte Carlo tech-

nique basically consists of drawing new particles accord-

ing to the PDF of the ensemble and then reassigning them

the same weights (Doucet et al. 2000). In most applica-

tions, the new particles are drawn from the discrete ap-

proximation of the state PDF. This is known as SIRF. To

avoid drawing similar particles when the system noise is

absent or insignificant, the particles might be also re-

sampled from an approximating continuous PDF (Pham

2001). This is known as SKRF. Moreover, even with

resampling, the PF would still require a large number of

particles to provide an accurate solution (Doucet et al.

2000). This makes brute-force implementation of the PF

with computationally demanding atmospheric and oce-

anicmodels quite a challenging problem (Anderson 2003;

Snyder et al. 2008; Van Leeuwen 2009).

b. Ensemble Kalman filtering

To avoid the problems associated with the application

of the PF and the KF with large dimensional nonlinear

problems, (Evensen 1994) introduced the EnKF as a

hybrid approach between the KF and the PF. The basic

idea behind this filter is to combine the optimal forecast
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step of the PF with a KF correction of the particles. The

weights are then kept uniform. The algorithm of the EnKF

can be summarized as follows:

d Prediction step: As in the PF, the analyzed particles

xa,ik21 are advanced in time with the model to compute

the forecast particles x f ,i
k .

d Correction step: A KF correction step is applied to

every forecast particle as

xa,ik 5 x
f ,i
k 1Ge

k[y
i
k 2Hk(x

f ,i
k )] . (7)

The gain matrixGe
k is the same as the Kalman gain but

is computed from the sample covariance matrix of x f ,i
k

as described by Evensen (2003).

In (7), the observation was assigned a superscript in-

dex associated with each particle. In contrast to the de-

terministic alternatives known as the ensemble square

root filters (Tippett et al. 2003), which do not require

perturbing the observations for the analysis computa-

tions, the observation needs to be perturbed by noise

sampled from the PDF of the observational error (Burgers

et al. 1998) for the EnKF.

The correction step of the EnKF uses only the first two

moments of the particles ensemble and is thus suboptimal

for non-Gaussian systems. In practical situations, how-

ever, the EnKF was found to be more robust than the PF

when small-size ensembleswere used because theKalman

update of the particles is applied using the forecast error

covariance matrices estimated from the particles en-

semble. This made the implementation of the Bayesian

filtering feasible with high-dimensional systems, as in

meteorology and oceanography. The KF correction re-

duces the collapse of the ensemble by ‘‘pulling’’ the par-

ticles toward the true state of the system, allowing the

filter to operate with a reasonable number of particles

(Kivman 2003; Hoteit et al. 2008; Van Leeuwen 2009).

With large enough ensembles, however, the PFwas shown

to outperform the EnKF (Nakano et al. 2007; Jardak

et al. 2010). It is still an active area of research as to the

defects of a Kalman filter–type linear correction that can

be overcome by using the fully nonlinear (non-Gaussian)

Bayesian correction in filtering highly nonlinear systems

such as the ocean or the atmosphere.

3. Lorenz-86 model description

a. Lorenz-86 model

The model used in this study is that of Lorenz (1986),

as modified by Wirosoetisno and Shepherd (2000, here-

after WS00), and will be referred to here as the extended

Lorenz model or exL86. It has only 4 degrees of freedom

but admits both a fast gravity wave and a chaotic vortical

mode, with an asymptotic, nonlinear balance between

fast and slow variables. The advantage of models such as

exL86 is that the balance between fast and slow vari-

ables is well understood, and the assimilated analysis can

thus be easily interpreted in terms of the balanced and

unbalanced components of themotion. The fact that this

model is conservative does not pose a great difficulty,

since the intention here is to use it to study assimilation

algorithms in the context of the slow versus the fast

variables. As pointed out by Lorenz (1986) andWS00,

dissipation of gravity waves is not the cause of the ex-

istence of a slow manifold, and therefore models such as

this one can be quite representative of realistic balanced

dynamics.

The basic equations of the model are as follows:

df

dt
5w , (8)

dw

dt
52

C

2
sin(2f1 2�bx) , (9)

dx

dt
52

z

�
, (10)

dz

dt
5

x

�
1

bC

2
sin(2f1 2�bx) , (11)

where C5 11 0.8 cos(0.92t), with t as time; �5 0.1 and

b 5 0.71 are two other constants.

Equations (8)–(11) describe a chaotic vortical mode in

f and w, coupled to a linear gravity wave in x and z. The

four variables are the spectral coefficients of potential

vorticity f and w (note that f is actually related to the

phase of two potential vorticity coefficients from the

original derivation; Lorenz 1986), geostrophic imbal-

ance z, and divergence x. The parameter b, which cou-

ples the fast and slow normal modes, corresponds to the

rotational Froude number and the parameter � is related

to the parameter b and the Rossby number by the fol-

lowing equation:

�[
RoBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11B2

p , (12)

whereRo5U/fL is theRossby number andB5 fL/
ffiffiffiffiffiffiffi
gH

p
is the rotational Froude number. Ro is the ratio of the

inertial time scale to the advective time scale of the flow,

and B is ratio of the Coriolis force to the gravitational

restoring force. The value of these parameters indicates

a time scale of separation between the different normal

modes (Saujani and Shepherd 2006). The model can be

run in various configurations to mimic the dynamics of

coupled and uncoupled scales of motion with only the
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slowly varying mode active or in a slaved configuration

with the fast varying mode slaved to the slow manifold.

b. Slow manifold initialization

The model can be configured in a slow manifold such

that two variables vary at a slow time scale and the fast

varying variables are set to be zero. The lowest-order

approximation to a slow manifold in the exL86 system is

found by setting x 5 z 5 0 and evolving only f and w.

For � 5 0 or b 5 0, this manifold is exact, and results in

the single-time scale system

df

dt
5w , (13)

dw

dt
52

C

2
sin(2f) . (14)

This system is analogous to a chaotic pendulum when

C is still time dependent in this configuration. This cor-

responds physically to the quasigeostrophic equations as

in both systems the fast gravity waves are filtered out. To

establish how nonlinearity of the slow mode affects data

assimilation, experiments with this model are performed

using the ensemble Kalman filter and the two flavors

of the nonlinear particle filter. Results are presented in

section 5.

c. Second-order slaving relations

The model can also be configured in a slaved relations

mode such that the fast varying modes are only depen-

dent on the slow variables and are time independent:

x52
�

2
Cb sin2f1O(�3) , (15)

z5 �2
�
Cbw cos2f1

C9

2
b sin(2f)

�
1O(�3) , (16)

where C9 is the time derivative of C.

To assess the efficiency of the nonlinear analysis step

in enhancing the dynamical balance of the filter solutions,

identical twin assimilation experiments were designed

such that the true state was balanced, but the observa-

tional errors were projected onto all degrees of freedom,

including the fastmodes. Results are presented in section 5.

4. Experiments setup and objectives

We set up experiments to test the performance of the

EnKF compared to the two flavors of particle filters, the

SIRF and the SKRF. The ExL86 model is configured in

three different modes. The first configuration used is the

slow manifold configuration of the model in which the

fast variables were set to zero and only the slow variables

were allowed to evolve in time. This model configura-

tion is weakly nonlinear in its dynamics.

The second configuration considered is the slaved

mode with the fast variables depending completely on

the evolution of the slow variables and not evolving in

time independently. This configuration of the model has

the slow variable evolving in time uncoupled to the fast

variable. Filtering on this configuration will help us under-

stand how the linear versus the nonlinear filter improves

the slow mode and hence also influences the evolution of

the fast mode without coupling back to the slow mode.

The third configuration is the fully nonlinear mode

with the slow and the fast variables coupled and evolving

in time separately as the full dynamics dictates. This model

configuration enables us to assess whether the filters are

improving the fully nonlinear coupled dynamics of the

model or only the slow or fast modes individually. This

would give us an insight into how important it is to have

a linear versus a nonlinear correction step to capture the

dynamics of a fully nonlinear coupled model.

In all experiments presented here, we chose a trajec-

tory of the model starting from the same initial condi-

tions of f526.617, w520.449, x5 0, and z5 0. In all

these three configurations with three different types of

filters, we investigated two different sets of observation

schemes. One observation scheme was to observe all var-

iables at all time. This observation scheme is called the all

observation experiment. The second observation scheme

was to observe only the first (slow) variable and the third

(mixed) variable every eight time steps. This observation

scheme is referred to as the sparse observation experi-

ment. We also investigated assimilating observations

from only the slow variable. We noticed that the errors

are higher than in the sparse observations experiment but

do not present the results from these experiments for the

sake of brevity. All assimilation experiments were done

with 10 and 25 ensemble members. Results using the 10-

member ensemble (not shown here) depict an overall

weaker performance for the particle filters compared to the

25-member ensemble case. Results from the experiments

with 25 ensemble members are presented in this study for

the different filter solutions. An inflation factor of 1.01 was

used for the EnKF simulations to account for subsampling

errors in the EnKF (Hamill et al. 2001). The model time

step was chosen to be 0.01 and the observational error

variance used was a percentage of the total variance of

each variable derived from the climatology of the system.

5. Results from experiments

Results from the experiments with the three separate

modes of the model are presented in this section.
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a. Slow manifold

To separate the problem of balance from that of

general nonlinearity and chaos, we establish how well

the EnKF, SIRF, and SKRF estimate the model state in

the single-time-scale slow manifold configuration of the

model. In the slow manifold case, only the variables x

and z are varying in time and variables f and w are zero

at all time.When all variables at all times are observed in

the assimilation experiments, the EnKF estimates the

slow variable with low error comparable to that of the

nonlinear filters’ solutions as shown in Fig. 1. This shows

that when the model has only a slowly varying single

time scale that is weakly nonlinear, the nonlinear filters

are comparable in estimating the state to the EnKF,

which is based on Gaussianity assumptions. Similarly, in

Fig. 2, we see the solutions from the three assimilation

schemes for the sparse observation experiment. This ex-

periment shows that the SKRF estimates the variable w

with lesser RMSE than SIRF and is comparable to the

FIG. 1. Slow manifold: Every variable at all time steps is observed. The system is known perfectly. It can be observed that both EnKF and

PFs capture the slow manifold well when all variables are observed.

FIG. 2. Slowmanifold: First and third variables at every eighth time step are observed.Herewe observe that the system is not well captured

by the EnKF analysis whereas the PFs capture the system well.
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EnKFRMSE (after a few time steps of assimilation). The

advantage of the PFs is that the balance of the dynamic

variables relies only on a balanced forecast ensemble that

is not changed by a linear correction step such as in an

ensemble Kalman filter. Neef et al. (2006) show that a

more balanced error covariance in an EnKF is the reason

it captures the dynamics better than an extended Kalman

filter (EKF). They also argue that overobserving can lead

to a more unbalanced forecast ensemble and thus to an

unbalanced analysis, yet in our experiments reduced ob-

servations lead to higher errors in all three filters, more so

in the EnKF.

b. Second-order slaving relations

In Fig. 3, the model was configured as an approxi-

mation to the slow manifold, where the evolution of the

system depends on the slow variables only. The fast var-

iables are found diagnostically as functions of the slow

variables, and the gravity wave is suppressed. It can be

seen that the EnKF estimate does not capture the tran-

sition between the peaks in the variable z. The reason for

this failure could be that the EnKF updates the ensemble

trajectories using a linear analysis estimate and hence

could destroy the nonlinear interactions between the

variables, while the SIRF and SKRF only change the

ensemble probabilities but do not modify their trajec-

tory. Hence, the nonlinear filters could retain the balance

relationship to the extent that ensemble members them-

selves are balanced and the forecasts in the ensemble use

the full nonlinear model and the gravity wave is there-

fore bounded. TheRMSE for variable z (fast variable) is

lowest for the SKRF. The peaks in variable z are cap-

tured well by both the SKRF and SIRF estimates. The

total RMSE is lowest for SKRF.

Figure 4 shows the model estimates for the same

slaved mode configuration with sparse observations.

Again, SKRF state estimates have the lowest RMSE

compared to the SIRF and EnKF state estimates. As in

Fig. 3, the EnKF state estimate is unable to infer the

transition between peaks in the variable z, which is in-

ferred better in the SIRF and SKRF solutions. Although

variable w is estimated well by all three filters, the SKRF

performs better with this variable. Hence, the nonlinear

filter, especially with particles sampled from a continuous

PDF, estimates the solutions to the highly nonlinearmodel

with scale separation better in both slow and fast time

scales. The balance relationship between the slow modes

and fast modes is simulated better by the nonlinear filters

FIG. 3. Slavedmanifold: Every variable at all time steps is observed. The system is known perfectly. It can be observed that both EnKF and

PFs capture the slow manifold well when all variables are observed.

3412 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 69



with better estimated fast–slow statistics used to update

the fast variables with observations of the slow variables.

This is also in agreement with the results of Neef et al.

(2009), where it is shown that an estimate of the fast

variables from observations of a slow variable alone re-

quires the fast–slow error covariances to capture the bal-

ance relationship.

c. Nonlinear mode

Figure 5 shows the total RMSE and the RMSE for

variablesw and z. The RMSE for all three filters, EnKF,

SIRF, and SKRF, are comparable and low. This shows

that when assimilating ‘‘frequent observations’’ (i.e., in

time periods much shorter than the error doubling time)

of all variables in a nonlinear model with interacting slow

modes and fast modes, all three filters capture the vari-

ables well and maintain the balance among the variables.

The slow mode is captured better by the EnKF than the

fast mode as seen in Fig. 6, where we assimilate sparse

observations. TheEnKF state estimate of the unobserved

slow mode variable w and fast variable z are worse than

the estimates by the nonlinear filters SIRF and SKRF.

The nonlinear filters are comparable to each other and

performwell in estimating both the slow and fast variables.

The transition between peaks in the fast variable are still

not well captured in these two schemes, yet they do

capture them well in time as compared to the EnKF

solutions. This is consistent with results from Neef et al.

(2006), where it is shown that a nonlinear evolution in

the model such as in PFs slows the growth in imbalance

in the model analysis and also allows for efficient as-

similation of sparser observations without a great loss

of balance. Neef et al. (2006) also show that the ensemble

averaging in the EnKF helps in keeping a balanced state

over an extended Kalman filter–like approach. This ad-

vantage is even better preserved in the weighted mean of

the PFs.

We have also tested this assimilation experiment with

various ensemble sizes from 10 to 100 and have shown

the total RMSE for each variable in each of the en-

semble size cases in Fig. 7. This figure shows that, for the

EnKF, increasing the ensemble size from 10 to 100 does

not significantly change the skill of the filter. For the PFs,

increasing the ensemble size from 10 to 50 improves the

skill of the filters but further increase in the ensemble

size does not gain much in terms of reducing the RMSE.

Even an ensemble size of 50 is much above the dimension

of the problem being solved. Yet to model the PDFs of

FIG. 4. Slaved manifold: First and third variables at every eighth time step are observed. Here we observe that the system is not well

captured by the EnKF analysis whereas the PFs capture the system well.
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each variable appropriately and integrate it forward in

time, it is necessary to sample the variable PDFs suffi-

ciently in order to capture the most information.

One of the main properties of this model is the non-

linearity in the interaction of different modes and the

non-Gaussianity of the fast mode. Both the nonlinear

coupling and the fast forcing imply non-Gaussian PDFs

for the fast variable. Hence, the model was run for all

three filters with 1000 ensemble members so as to get

a good estimate of the prior and posterior estimate for

the PDFs of the model variables for the fully nonlinear

configuration. The PDFs of the state are estimated using

a Gaussian mixture model (GMM), a parametric prob-

ability density function represented as a weighted sum

of Gaussian component densities (McLachlan and Peel

2000; Anderson and Moore 1979).

A Gaussian mixture model is a weighted sum of N

Gaussian densities:

p(x js)5 �
N

i51

wig(x jmi,Si) , (17)

where x is the measured quantity, wi are the Gaussian

mixture weights, and g(x jmi,Si) are the component

Gaussian probability density functions. The mixture

weights satisfy the constraint that �N
i51wi 5 1. The col-

lective set of parameters is represented as

s5 fwi,mi,Sig, i5 1, . . . ,N . (18)

Plotting the PDFs of the variables shows the non-

Gaussian nature of the PDFs of the variables in the fully

nonlinear case. Doucet et al. (2000) show theoretically

that the estimated PDF from the PFs converge to the

Bayesian PDF as the number of samples tends to in-

finity. The EnKF always approximated the PDF to be

Gaussian but the particle filters are able to capture a

non-Gaussian PDF and evolve it forward in time. This

could be a critical reason for the PFs to perform better

than the EnKF.

Figure 8 shows that in the forecast and the analysis,

the particle filters capture the non-Gaussian PDFs in

their ensemble spread. When we reduce the number of

observations in time, both the forecast and analysis PDFs

conditioned on the observations increase in their spread,

yet the PFs do have a non-Gaussian PDF that is likely to

represent the non-Gaussianity of the system better, as

shown in Fig. 9.

FIG. 5. All modes: Every variable at all time steps is observed. The system is known perfectly. It can be observed that both EnKF and PFs

capture the slow manifold well when all variables are observed.
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Neef et al. (2009) show that the EnKF analysis cycle

can cause the ensemble to lock onto a gravity wave of

the wrong amplitude, causing filter divergence in the

analysis of the fast mode, even in regimes where it con-

verges for the slow mode. Fast-mode filter divergence

comes about because the linear gravity wave ensemble

does not spread between observations. This drawback

is not overcome even when observations are very fre-

quent. In realistic applications it is possible that gravity

waves that are present in the truthmay not be represented

FIG. 6. All modes: First and third variables at every eighth time step are observed. Here we observe that the system is not well captured by

the EnKF analysis whereas the PFs capture the system well.

FIG. 7. Comparison of average error for all four variables in the ‘‘All modes’’ configuration of the model with

observations taken at every eighth time step, showing errors for (top left) f, (top right) w, (bottom left) x, and

(bottom right) z. The model was integrated forward for 3000 time steps to derive these error values.
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in the observations, perhaps because of filtering or av-

eraging of observations. In that case, only the compo-

nent that is slaved to the slow mode can be controlled

by observations, which requires the filter to simulate

the balance relationships between slow and fast model

variables.

Hence, the above experiments show that in estimating

states with a weakly nonlinear model or a highly non-

linear model with interactions between the fast and slow

variables in balance, both the nonlinear filters unequivo-

cally give better estimates of the state variables than the

EnKF, which is based on a Kalman correction.

6. Discussion and conclusions

Since its introduction five decades ago, Kalman fil-

tering has been adapted as one of the most promising

tools for data assimilation. The Kalman filter is an op-

timal linear filter. Hence, two different approaches are

generally used for the implementation of this estimation

technique to nonlinear models. The first approach con-

sists of linearizing themodel equations leading to the so-

called extended Kalman filter. This approach has been

shown either to be too prohibitive computationally or

to have limitations in reduction in error of estimation for

strongly nonlinear systems with simplified versions of the

filter. Another approach is to use linear analysis–based

Kalman filter for nonlinear estimation; this is based on

the ensemble approach and the use of nonlinear Monte

Carlo ensemble forecasting methods to represent esti-

mation errors with an ensemble of state vectors. Until

recently, these linearized filters have been shown to per-

form relatively well in state estimation of multidimen-

sional nonlinear problems compared to other approximate

methods such as optimal interpolation. The two main

disadvantages that plague all Kalman filter–based ap-

proaches are that they do not produce the variance-

minimizing estimate in the analysis step for nonlinear

models and they initialize theFokker–Planck–Kolmogorov

equation with an ensemble that preserves only the first

FIG. 8.Allmanifold: PDFs of forecast and analysis variablesw and z for the ‘‘Allmodes’’ case estimated using aGaussianmixturemodel

are shown as a function of time. The filters were run with observations taken at every time step of the model run and the ensemble size of

the filters was 1000 ensemble members.
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two moments of the analysis error statistics. It is also not

completely understood how these filters influence the

state estimation of different scales of dynamics.

Particle filters, on the other hand, are fully nonlinear

in bothmodel evolution and analysis steps (Doucet et al.

2001; Gordon et al. 1993). They use the full error sta-

tistics in filtering and hence minimize the true variance

and not an assumed Gaussian variance. They are more

suited for nonlinear estimation and nonlinear Monte

Carlo ensemble forecasting of highly nonlinear processes

such as ocean–atmosphere dynamics than linear-based

Kalman filter. Yet, a fundamental problem with PFs is

the so-called ‘‘curse of dimensionality’’, which is related

to the fact that a relatively small number of model ensem-

ble runs trying to estimate a large-dimensional system

space is very unlikely to be close to the set of observa-

tions from this system (Snyder et al. 2008). More com-

plicated particle filters have been proposed that can

overcome the curse of dimensionality but they have not

been used in geoscience applications very much (Van

Leeuwen 2009). We have tested two such modified PFs,

the SIRF and the SKRF, to understand how these filters

influence the estimation of different scales of dynamics.

In this paper, we have compared the efficiency of the

EnKF with the two flavors of nonlinear particle filters,

the SIRF and the SKRF, for problems (i) where there

exists a separation of time scales between relatively fast

and slow motions, (ii) where the free fast motion is os-

cillatory, and (iii) where the evolution of the fast vari-

ables in the true state is slaved to that of the slow. These

experiments showed that the SKRF, SIRF, and EnKF

have quite different properties when it comes to pre-

serving balance in the assimilated analysis. The PFs al-

ways outperformed the EnKF with any of the tested

schemes of observation frequencies or modes of the

model. This strongly suggests that a filter preserving the

nonlinearity in the forward model tends to also preserve

the balance in the model.

FIG. 9. Allmanifold: PDFs of forecast and analysis variablesw and z for the ‘‘Allmodes’’ case estimated using aGaussianmixturemodel

are shown as a function of time. The filters were run with observations taken at every eighth time step of the model run and the ensemble

size of the filters was 1000 ensemble members.
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Application of particle filters is attractive from the

viewpoint that they use the full error statistics to in-

tegrate the Fokker–Planck–Kolmogorov equations of

the system, unlike a Kalman filter, which uses only the

first two moments in its integration. Hence, they are a

truly variance-minimizing scheme.Numerical results from

experiments with the exL86 model show that nonlinear

filters behave much better than the ensemble Kalman

filter methods with strongly nonlinear systems. The non-

linear filters also better preserve the dynamical balance of

the system state resulting in more stable predictions in

the slow and fast variables. Particle filters, especially SKRF,

capture slavedmodes better, implying that nonlinear jumps

in dependent variables are simulated better. When the

observation frequency and the number of variables ob-

served are decreased, the nonlinear filters show a very

clear improvement in performance compared to the lin-

ear analysis–based Kalman filter estimations for both the

slow and fast variables in all configurations of the model.

This is very important for atmospheric and oceanic data

assimilation where only a small fraction of the system

state is observed.

This study is intended as a complement to similar stud-

ies such as Neef et al. (2006) and studies involving larger,

more complicated models, such as Mitchell et al. (2002).

Key points of the balance problem and drawbacks of

linear assumptions in estimation theory compared to non-

linear filters highlighted in this study add to the research

in the still-evolving field of 4D data assimilation. This

research can be extended to study the balance dynamics

in more complicated models to understand the behavior

of nonlinear filters in systems with strong nonlinearity.
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