
Vol.:(0123456789)1 3

Climate Dynamics (2019) 52:3183–3201 
https://doi.org/10.1007/s00382-018-4323-z

Remote and local influences in forecasting Pacific SST: a linear inverse 
model and a multimodel ensemble study

Daniela Faggiani Dias1  · Aneesh Subramanian1 · Laure Zanna2 · Arthur J. Miller1

Received: 27 October 2017 / Accepted: 18 June 2018 / Published online: 26 June 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
A suite of statistical linear inverse models (LIMs) are used to understand the remote and local SST variability that influences 
SST predictions over the North Pacific region. Observed monthly SST anomalies in the Pacific are used to construct different 
regional LIMs for seasonal to decadal predictions. The seasonal forecast skills of the LIMs are compared to that from three 
operational forecast systems in the North American Multi-Model Ensemble (NMME), revealing that the LIM has better 
skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in 
the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts 
initialized during the summer having better skill than those initialized during the winter. The data are also bandpass filtered 
into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the 
propagator matrix. Moreover, we investigate the influence of the tropics and extra-tropics in the predictability of the SST over 
the region. The Extratropical North Pacific seems to be a source of predictability for the tropics on seasonal to interannual 
time scales, while the tropics enhance the forecast skill for the decadal component. These results indicate the importance 
of temporal scale interactions in improving the predictions on decadal timescales. Hence, we show that LIMs are not only 
useful as benchmarks for estimates of statistical skill, but also to isolate contributions to the forecast skills from different 
timescales, spatial scales or even model components.
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1 Introduction

The Pacific Ocean sea surface temperature (SST) exhib-
its variability on timescales from diurnal (Tanahashi et al. 
2003; Clayson and Weitlich 2007) to decadal and centennial 
(Mantua et al. 1997; Power et al. 1999; Yeh et al. 2011). 
These coherent large-scale SST anomalies observed in the 
Pacific Ocean also impact the weather and climate in regions 
around the Pacific and globally (e.g., Vimont et al. 2001; 
Grimm and Tedeschi 2009; Allen et al. 2015; Capotondi and 
Sardeshmukh 2015; L’Heureux et al. 2015). SST fluctuations 
over the Pacific Ocean are caused by various mechanisms, 
both internal ocean variability as well as local and remote 

stochastic atmospheric heat and momentum flux forcings 
(Bjerknes 1966; Battisti and Hirst 1989; Newman et al. 
2016). Different processes influence the SST anomaly evo-
lution over this region, such as climate modes forced by sto-
chastic atmospheric variability that manifest as oscillations 
in surface variables and in the coupled atmosphere–ocean 
system (Frankignoul and Hasselmann 1977; Penland and 
Matrosova 1994; Di Lorenzo et al. 2015).

For more than a century scientists have been exploring 
factors that impact the SST evolution over the North Pacific 
and especially over the California Coastal region. McEwen 
(1914) explored impacts of temperature difference between 
the continent and the ocean on the large-scale atmospheric 
pressure and circulation over the Pacific, which then impacts 
the SST and leads to a feedback on the process on decadal 
timescales (Newman et al. 2016). Therefore, it is impor-
tant to investigate not only which modes of variability in 
the Pacific dominate each timescale, but also the interac-
tions among those scales of variability, in order to improve 
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our understanding of the role of such interaction in the 
predictability.

For seasonal to interannual time scales, the El Niño 
Southern Oscillation (ENSO) is the dominant source of 
variability for the Pacific Ocean and it has been identified 
as the highest source of predictability in these time scales 
for SST anomalies in the Tropical Pacific (Xue et al. 2013). 
The predictability of ENSO variability has been tested using 
several statistical and physical methods, ranging from lin-
ear methods (e.g., Linear Inverse Models, Penland 1989; 
Penland and Sardeshmukh 1995, and canonical correlation 
analysis, Barnston and Ropelewski 1992), nonlinear statisti-
cal methods (e.g., Eccles and Tziperman 2004; MacMynow-
ski and Tziperman 2008; Chen et al. 2016) to operational 
coupled general circulation models (e.g., North-American 
Multimodel Esemble—NMME, Kirtman et al. 2014). The 
latter is a global prediction system that was recently devel-
oped to exploit the idea of using multiple models to improve 
the skill of the forecasts. Indeed, Becker et al. (2014) showed 
that NMME mean forecasts have more skill in predicting 
ENSO-related variability than individual models.

The decadal variability in the Pacific is also well known, 
but the mechanism that control these long-term variations 
are still unclear. The Pacific Decadal Oscillation (PDO; 
Mantua et al. 1997) represents the primary mode of SST 
variability across the midlatitude North Pacific. Although 
PDO is correlated with a number of physical and biogeo-
chemical variables, its dynamical mechanism is associ-
ated with the combination of a few phenomena (Miller and 
Schneider 2000; Schneider and Cornuelle 2005; Newman 
et al. 2016): teleconnections from the Tropical Pacific via 
“atmospheric bridges” (Alexander et al. 2002), large-scale 
stochastic atmospheric forcing via intrinsic variability of the 
Aleutian Low, ocean memory via reemergence mechanism 
(Ma and Deser 1995), and Rossby wave signatures along 
the Kuroshio–Oyashio Extension (KOE) region (Qiu 2003; 
Taguchi et al. 2007). Moreover, the decadal variability in 
the Pacific is not dominated by PDO to the same degree as 
the interannual variability is dominated by ENSO (Newman 
2013), and other modes do play a role. The North Pacific 
Gyre Oscillation (NPGO; Di Lorenzo et al. 2008) represents 
the second mode of North Pacific SST and it characterizes 
the oceanic response to the atmospheric pressure pattern 
called North Pacific Oscillation (NPO; Linkin and Nigam 
2008; Ceballos et al. 2009).

The ability to predict these fluctuations of Pacific SST 
anomalies has many obvious economical and societal ben-
efits because it can help improve adaptation and mitigation 
to extreme weather and climate anomalies (Alexander et al. 
2008). Yet, current generation of numerical models have 
many limitations in predicting the system accurately in this 
region (Meehl et al. 2014; Becker et al. 2016; Barnston et al. 
2017; Newman and Sardeshmukh 2017) and the long record 

of observations can be used to help inform the models bet-
ter. Our goal in this study is to understand the remote and 
local SST variability that influences SST predictions over 
the North Pacific region and to investigate the interactions 
between dominant modes of variability on time scales from 
seasonal to decadal. With that, we expect to improve our 
understanding on how the long observed SST record can 
help better guide multi-model ensemble forecasts.

We use a linear inverse model (LIM, Penland and Mago-
rian 1993) to estimate the predictability of the SST anoma-
lies in the North and Tropical Pacific at different time scales. 
We then use a suite of the seasonal forecasts from NMME 
models to investigate the limits on forecast skill of the 
system, by comparing a low-dimensional empirical linear 
model with a high-dimensional nonlinear coupled model. 
LIM constitutes the least complex form of a reduced stochas-
tic–dynamic climate model (Majda et al. 2009) and it has 
been broadly used for diagnostic and prediction of Tropical 
and Extratropical weather and climate from diurnal to dec-
adal time scales (Penland and Sardeshmukh 1995; Alexander 
et al. 2008; Newman et al. 2009; Zanna 2012; Cavanaugh 
et al. 2014; Capotondi and Sardeshmukh 2015; Huddart 
et al. 2016; Newman and Sardeshmukh 2017). Those stud-
ies have shown that LIMs have comparable predictive skill 
to high-dimensional global circulation models, despite their 
reduced number of degrees of freedom.

This paper is organized as follows. In Sect. 2 we briefly 
introduce the LIM theory. Section 3 describes the data used 
and establishes the LIM model configuration and the experi-
ments performed. Section 4 shows LIM forecasts skills for 
seasonal, interannual and decadal experiments as well as 
shows the comparison with NMME hindcasts skill. Finally, 
in Sect. 5 we summarize the main results and point some 
concluding remarks.

2  Linear inverse modeling

Linear inverse model (LIM) assumes that the evolution of 
some phenomena in a system can be represented as a linear 
process forced by stochastic noise. In other words, it can be 
separated into a linear deterministic part and a nonlinear 
part, represented by white noise fluctuation, which may be 
spatially correlated but temporally uncorrelated. Therefore, 
the governing dynamics of such system can be represented 
in the form:

where x is the system state vector, L is the time-independent 
linear operator matrix and � is the white stochastic forcing. 
A detailed description of LIM procedure have been broadly 
discussed in several papers (e.g., Newman et  al. 2003; 

(1)
dx

dt
= Lx + �
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Newman 2007; Penland and Sardeshmukh 1995), so here 
we only provide some essential information necessary for 
discussion.

The linear operator L can be estimated from the 
observed statistics of the system under consideration if 
the relation in (1) can be used to describe this system. For 
that, we use the lag covariance matrix C(�) of the system 
with components xi , estimated at any fixed lag � from the 
observations as Cij(�) = ⟨xi(t + �)xj(t)⟩ , where the angle 
brackets denote a long-term average and the subscripts i 
and j represent the covarying observational time-series. 
Given that in linear inverse modeling one assumes that 
the relation in (1) is valid, the system satisfies the relation

where C(0) is the lag 0 covariance matrix of the state vector 
x and B(�) = exp(L�) is the propagator matrix that repre-
sents the evolution of the predictable signals at some lead 
time � . Finally, for some chosen lag-time �0 , the matrices 
L(�0) and B(�) can be determined from the estimates of C(�0) 
and C(0) as follows:

The matrices L and B should be independent of the choice 
of �0 and how well this holds can be used as a measure of 
the efficacy of applying LIM to the system (Penland and 
Sardeshmukh 1995). This is tested for the specific LIM’s 
configurations used in this study by applying the so-called 
“ � test” for each of the time scales considered. This test 
can be performed in several different ways, and here we 
apply two methods. First, by comparing the observed lag-
covariances at different lags with the ones estimated using 
our LIM configurations (e.g., Newman et al. 2011). Since 
the linear approximation in (1) implies that C(�) = B(�)C(0) 
(Eq. 2), the model should be able to reproduce the observed 
lag-covariances at the different lags � . Besides testing the 
independence of the matrix B from �0 , this test also shows 
how well the relation in (1) describes the system. Our tests 
show that this is true for every LIM configuration used here, 
and for different lags. For example, the unfiltered LIM cap-
tures the local SST lag-covariance up to 12 months. This 
also is true for the filtered experiments, both interannual and 
decadal, in which the local SST lag-covariance is captured 
for lags ranging from 2 to 48 months (not shown). A sec-
ond verification for the � test was made by calculating the 
Euclidean norm of the sub-matrices in L as function of �0 , 
following the methodology described in Penland and Sard-
eshmukh (1995). Our LIM also passes in this test, yielding 
similar results to Penland and Sardeshmukh (1995). Those 
results indicate that the linear approximation described in (1) 
is valid for the configurations used in this study.

(2)C(�) = B(�)C(0)

(3)B(�) = exp(L�) = [C(�0)C(0)
−1]

�

�0

Given the estimation of the deterministic part of the sys-
tem using LIM, the forecast of x(t + �) can be made by ana-
lytically solving (1), which results in

where � is the lead time, t is the initial condition and 
B(�)x(t) will be the best forecast in the least square sense. 
� is the error vector and represents the effect of the unpre-
dictable stochastic forcing (term � in Eq. 1). The expected 
value of the global error covariances can be estimated by 
E(t, �) = ⟨x(t + �)xT (t + �)⟩ − B(�)⟨x(t)xT (t)⟩BT

(�) ,  and 
can provide a measure for the expected forecast error due to 
unpredictable dynamics.

3  Model details and experiments

3.1  Data

The SST dataset used for the LIM analysis and forecasts are 
from the Hadley Center Sea Ice and Sea Surface Tempera-
ture (HadISST, Rayner et al. 2003), interpolated on a 1 ◦ by 
1 ◦ grid for the North and Tropical Pacific (between 15◦ S 
and 60◦N), and with monthly means from 1900 to 2016. 
The normalized anomalies (SSTa) are determined by first 
removing the climatological monthly mean for each grid cell 
at each month, then dividing by their standard deviation and 
finally weighting each grid cell by their surface area, in order 
to equally weight the Tropical and subtropical one degree 
cells. SSTa are filtered with a third order Butterworth fil-
ter for three different time scales: decadal (D), with periods 
greater than 10 years; interannual (I), with periods between 1 
and 10 years; and seasonal (S), with periods less than 1 year.

Singular value decomposition (SVD) is applied for the 
unfiltered SSTa time series (U) and for each of those three 
filtered datasets separately (D, I and S). Therefore, the SSTa 
fields are decomposed into empirical orthogonal functions 
(EOFs) that describe the spatial pattern, and their associated 
principal components (PCs) that describe the time evolution. 
In addition to temporal fields, PCs and EOFs are also deter-
mined for different domains over the Pacific: tropics plus 
extratropics (PA, 15◦S–60◦N), only tropics (TP, 15◦N–15◦

S), and only extratropics (ET, 16◦N–60◦N).

3.2  LIM configuration

We choose to construct the SSTa state vector as a truncated 
time series of the leading PCs, and the form of x depends 
on which experiment is being performed, either unfiltered 
(for seasonal forecasts), or filtered SSTa (for interannual and 
decadal forecasts).

(4)x(t + �) = B(�)x(t) + �
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3.2.1  Unfiltered LIM

For the unfiltered experiments, the state vector x is built using 
the leading 20 PCs of SSTa ( xU ). Moreover, one state vector 
is built for each spatial field ( xUPA , xUTP and xUET ). Therefore, 
Eq. (1) can be rewritten for the unfiltered experiments as:

The amount of total variance explained by the 20 leading 
PCs for each of those experiments are very similar: the 
20 PCs from the extratropics explain 87.4% ( ETU ), from 
the tropics 91.2% ( TPU ), and from the entire North Pacific 
( PAU ) they explain 86.2% (Table 1).

3.2.2  Filtered LIM

To construct the state vector x for the filtered experiments, 
we follow the methodology adopted in Huddart et al. (2016). 
We use the leading 20 PCs corresponding to each time scale 
( xD , xI and xS ), and combine them into a single 60-component 
vector. As in the unfiltered experiment (Sect. 3.2.1), one state 
vector is built for each spatial field ( xPA , xTP and xET ). So, the 
vectors x for the filtered experiments have the following form:

With this definition of x , we can rewrite Eq. (1) in a general 
form as:

We can observe in Eq. (9) that it is possible to diagnose 
linear relationships among the different time scales through 
the dynamical operator L . Its diagonal components represent 

(5)
dxUPA

dt
= L

UPA
xUPA + �UPA

(6)
dxUTP

dt
= L

UTP
xUTP + �UTP

(7)
dxUET

dt
= L

UET
xUET + �UET

(8)xPA =

⎡
⎢
⎢
⎣

xDPA
xIPA
xSPA

⎤
⎥
⎥
⎦

xTP =

⎡
⎢
⎢
⎣

xDTP
xITP
xSTP

⎤
⎥
⎥
⎦

xET =

⎡
⎢
⎢
⎣

xDET
xIET
xSET

⎤
⎥
⎥
⎦

(9)
d

dt

⎡
⎢
⎢
⎣

xD
xI
xS

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

LDD LDI LDS

LID LII LIS

LSD LSI LSS

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

xD
xI
xS

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

�D
�I
�S

⎤
⎥
⎥
⎦

the interaction between each time scale with itself, while the 
off-diagonal components diagnose the interactions between 
two time scales. Filtering the data allows us to investigate 
how each time scale interacts with one another at different 
lead times, as well as the direction of this interaction (e.g L

DI
 

represents the downscale interactions, hence how decadal 
modes drive interannual modes).

As in the unfiltered PCs, the 20 leadings PCs for the 
filtered data explain a similar amount of variance for each 
region. The 20 leading PCs of the extratropics for the 
interannual time scale explain 92.6% ETI , the ones from 
the tropics explain 96.1% ( TPI ), and from them combined 
92.7% ( PAI ). For the decadal time scale, those three differ-
ent domains ( ETD , TPD , PAD ) explain at least 99% of the 
variance (Table 1).

3.3  LIM forecasts

Following the procedure described in Sect. 2, we use the 
propagator matrix B , to do the forecasts of the PCs time 
series. First we do forecasts on seasonal time scale using 
the unfiltered SSTa time series for each spatial field, hence 
using the state vectors from Eqs. 5, 6 and 7.

The forecast made are 12-month long and they are initial-
ized every month from January to December of the years 
1995–2010 (experiments PA95, TP95 and ET95). The esti-
mates of B and the forecast skill are made in a cross-valida-
tion sense by first excluding those 15 years of the SSTa time 
series (which we call here as verification period), and esti-
mating B for the remainder years. The 12-months forecasts 
are then generated for every month of the independent 15 
years, resulting in a total of 180 seasonal forecasts. In order 
to test the influence of the excluded data on the predictabil-
ity, we used a different verification period to perform this 
LIM 12-months forecast (from 1950 to 1965, experiments 
PA50, TP50 and ET50).

The LIM′ s seasonal forecast skill is then compared to that 
of the models of the North American Multimmodel Ensem-
ble (NMME, Kirtman et al. 2014). The models included are 
all the GCMs from NMME phase 1 that have monthly SST 
hindcasts: the Community Earth System Model (CESM1) 
and the Canadian Center for Climate Modeling and Analy-
sis (CanCM3 and CanCM4). The NMME dataset can be 
found in http://iridl .ldeo.colum bia.edu/SOURC ES/.Model 
s/.NMME/. The NMME hindcasts are also 12-month long 
and are initialized every month from January to December 
of the years 1995 to 2010. We used the ensemble mean of 
those models and calculated the anomalies by subtracting 
the climatological mean of each month and each lead time 
of the hindcast.

To evaluate the forecast skill and the predictability, 
we use two measures: the anomaly correlation coefficient 
(ACC) and the root mean square error (RMSE). Those 

Table 1  Amount of variance 
explained by the 20 EOFs for 
each of LIM experiments

D (%) I (%) U (%)

PA 99.4 92.7 86.2
TP 99.7 96.1 91.2
ET 99.5 92.6 87.4

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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estimates are calculated by comparing LIM and NMME 
forecasts with the HadISST data. First we calculate the 
ACC for each grid cell at different lead times for the LIM 
forecasts (experiments PA50, TP50, ET50 and PA95, 
TP95, ET95). This test allows us to quantify the skill at 
a given lead time and at different parts of the domain. 
Therefore, by looking for regions in the domain where the 
predictable signals are high for longer lead times, we can 
estimate in which areas the SSTa evolution is approxi-
mated well by linear dynamics.

Three different domains are used to forecast the Pacific 
SSTa. First, the forecast is made for the whole North 
Pacific (PA) and then individually for the tropics (TP) and 
the extratropics (ET). It is important to address that the 
basis function in which each LIM spatial field is based is 
not exactly the same. That is, the 20 leading modes used 
here do not explain exactly the same amount of local and 
total variance. However, they explain at least 86% for the 
unfiltered experiment, 92% for the intearanual experiment, 
and 99% for the decadal, also the higher modes explain 
less than 1% of the total variance. Therefore, the results 
of the forecast skill for TP and ET can be compared to 
the results of the LIM forecasts trained with the whole 
domain, in order to investigate possible links between the 
Tropical and Extratropical SSTa evolution.

We then choose two regions in the Pacific to perform 
the LIM and NMME comparison: California Current Sys-
tem (CCS, 30◦N–40◦ N and 232◦E–244◦ E) and Niño 3.4 
region (5◦S–5◦ N and 190◦E–240◦E). We calculated the 
SSTa spatial mean within those regions for each of those 
datasets and the skill was evaluated by calculating the 
ACC between each forecast and the observations, for each 
lead time and each start month. Additionally, we computed 
the time evolution of RMSE between each forecast and 
observations, for each region.

Finally, we perform forecasts individually for the inter-
annual and the decadal components, for each spatial field 
using the state vectors ( x ) described in Eq. 8. Although 
the forecast is made individually for each time scale, the 
interactions among xD , xI and xS are explicitly included in 
B . Therefore, the forecasts made for each individual time 
scale takes into account the linear relationship between 
each other.

The forecast skill calculations are also cross-validated and 
evaluated by using the maps of ACC. For this case, LIM-
forecasts are 10-years long and they are also initialized every 
month from January to December of the years 1950–1960. 
We remove the 10 years of the SSTa time series, then we 
calculate the EOFs and PCs for the remainder years and we 
use those to estimate B . The forecasts are then made for the 
independent 10 years removed and this procedure is repeated 
for each mont h along those 10 years, resulting in a total of 
120 forecasts.

4  Results and discussion

4.1  Seasonal forecasts: unfiltered data

The predictability of North and Tropical Pacific SSTa was 
first evaluated using the ACC for the unfiltered data on a 
seasonal time scale. Figures 1 and 2 show the ACC for 3, 
6, 9 and 12 forecast lead months for all the experiments 
described in Sect. 3.2.1 (50 and 95, respectively).

Overall, the spatial distribution of the forecast skill for 
all the experiments are very similar, with higher skill seen 
in three key regions, marked in the Fig. 1a with a black 
circle and with the numbers 1–3: a circular-shaped region 
in the northwestern Pacific (1), a broad region along the 
coast of North America extending southwestward to the 
central Pacific (2), and a region east of the dateline in the 
border of the South tropics (3). Skill minima are found in 
the equatorial cold tongue region in the eastern Pacific, in 
regions surrounding the circular shaped region of maxi-
mum skill in the northern extra-tropics, and in a V-shaped 
region in the western Pacific. The decrease in skill with the 
increasing lead time is also similar for all the experiments. 
Not surprisingly, the regions of little skill are located along 
the regions of the higher amplitude of the first and second 
EOF modes of the Pacific. Those areas have the weakest 
forecast signal for the configuration of linear model used 
in this study. Different reasons can explain the lack of fore-
cast skill: (1) the SST-only LIM may not be adequate for 
some regions, due to the lack of persistence. Indeed, it was 
shown that there is an improvement in the LIMs forecast 
skill for the Tropical Pacific when including subsurface 
(Newman et al. 2011); (2) nonlinear processes dominate 
the variability, which are not fully captured by the LIM; 
(3) the predictability is low and the evolution of the system 
is dominated by stochastic processes. On the other hand, 
regions with the highest forecast skill are likely associated 
with ENSO or PDO related signals where SSTa evolution 
is largely driven by slower timescale processes which tend 
to be more linear.

Excluding data from the tropics or the extratropics to 
make the forecast and comparing their skill with the fore-
cast made with the whole domain allowed us to identify 
regions with possible links between the SSTa evolution 
in the tropics and in the extratropics. Including the extra-
Tropical SST field in the forecast model helps improve the 
skill in predicting the Tropical SSTs (experiments PA50 
and PA95 compared to TP50 and TP95). By comparing 
Figs. 1a–d, 2a–d to 1e–h, 2e–h, it is possible to identify 
a loss in skill for TP50 and TP95 experiments right in 
the first 3 months of forecast. For longer lead times this 
improvement in the skill is clearer in the PA95 experiment. 
This increase in the skill for the tropics when including 
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data from the extratropics may be an indication that the 
SST-only LIM captures the influence of the extratropics 
in the Tropical variability. Some other studies that used a 
Tropical LIM extended far enough into the subtropics cap-
tured a SST pattern that leads to optimal ENSO excitation, 
described as the ENSO precursor mode originally by Pen-
land and Sardeshmukh (1995). This pattern, also known 
as the Pacific Meridional Mode (PMM) acts as a conduit 
through which the Extratropical atmospheric variability is 
conducted to the tropics (Chiang and Vimont 2004; Chang 
et al. 2007; Vimont et al. 2009). Additionally, several other 
studies performed over the past two decades have identi-
fied the mechanism behind this forcing. The atmospheric 
variability of the North Pacific has been identified as a 
forcing for the Tropical climate variability through the 
North Pacific Oscillation (NPO) and through the excitation 
of the PMM (e.g., Vimont et al. 2001, 2003, 2009; Chiang 
and Vimont 2004; Chang et al. 2007; Di Lorenzo et al. 
2015). During boreal winter, the southern branch of NPO 
modulates the strength of the northeasterly trade winds, 
leaving an anomalous imprint in the SST through latent 
heat flux changes. Those anomalies persist into boreal 
summer and induce changes in the Tropical atmospheric 
circulation. This is the so-called seasonal footprinting 

mechanism (SFM) (Vimont et al. 2003). Even though our 
analysis included only SST data, LIM implicitly includes 
the impact of all other variables that are related to SST 
(Newman 2007). Moreover, the persistence of high skill 
forecast up to 12 months in the region (2) in Fig. 1a resem-
bles the shape of PMM. Therefore, the linear model cap-
tured the effect of atmospheric Extratropical variability on 
the Tropical climate and the forecast skill improvement is 
an indication that the SST evolution as well as the interac-
tions with the atmosphere are well approximated by lin-
ear dynamics. A recent study suggested that the influence 
of the midlatitudes SST anomalies associated with NPO 
and the propagation into the tropics through the PMM is 
essentially linear (Thomas and Vimont 2016). Our results 
support this suggestion and add one more evidence for the 
linearity of this mechanism.

Considerations on the spatial characteristics of ENSO 
can be made with our results. The SST anomalies are well 
approximated with the LIM in the central tropics, with ACC 
greater than 0.4 persisting until 1 year of forecast. On the 
other hand, the skill in the eastern tropics decreases much 
faster, with ACC close to zero after 6 months of forecast 
(Figs. 1a–h, 2a–h). The geographical distribution of skill 
in the tropics resembles the two types of ENSO that are 

Fig. 1  Maps of temporal correlation for the SST anomalies between 
the LIM seasonal forecast and observations, for different lead times. 
The verification period used was 1950–1965. a–d LIM trained using 

data for the whole domain (experiment PA50); e–h LIM trained 
only with data from the Tropical region (experiment TP50); i–l LIM 
trained with data only from the extratropics (experiment ET50)
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known: the Central-Pacific (CP), which produces warm SST 
anomalies in the tropics around the dateline, and the East-
ern-Pacific (EP), where the warm SST anomalies are spread 
from the eastern tropics to the dateline. The precursors that 
influence the development of each type of ENSO have been 
recently investigated. Alexander et al. (2010) showed that 
the Extratropical atmospheric variability, through the PMM, 
is capable of triggering ENSO-like responses in the trop-
ics and other studies have shown that this mechanism plays 
a key role in the development CP ENSO events (Yu et al. 
2010; Yu and Kim 2011; Vimont et al. 2014). However, 
there is no agreement in the literature that it is the only or 
the main cause. An additional explanation explores the influ-
ence of the initial thermocline state in the selection of a 
specific type of ENSO, in which a deeper thermocline in 
the eastern (central) tropics favors a EP (CP) ENSO events 
(Capotondi and Sardeshmukh 2015), although the EP ENSO 
events rely more on thermocline-SST feedbacks whereas CP 
ENSO events may be influenced more by atmospheric forc-
ing (Kao and Yu 2009). Regarding the linearity of those 
mechanisms, Thomas and Vimont (2016) proposed that the 
thermocline parameters are strongly dependent on the non-
linear dynamics while PMM influence is mostly linear. In 
fact, the higher skills found in the central tropics suggest 
that the SST anomalies in this region are more influenced by 

linear processes than the SST anomalies in the eastern trop-
ics. Therefore, our results are consistent with those findings 
and they highlight the importance of different contributors 
to the predictability in the Tropical Pacific. We reiterate, 
though, that other factors may play a role in the development 
of different types of ENSO, such as the nonlinear advection, 
that was shown to have a key role in the growth of central 
Tropical SST anomalies (Capotondi 2013; Chen and Majda 
2016).

Regarding the forecast for the extratropics, the inclusion 
of data from the tropics in the LIM configuration either do 
not improve the skill (experiment PA50, Fig. 1a–d) or act to 
reduce it for most North Pacific region (experiment PA95, 
Fig. 2a–d). For example, in PA95 the ACC decreases to 0.2 
after 12 months of forecast, while it remains higher than 0.6 
when the tropics are excluded (ET95). Curiously, it is known 
that the variability in the Tropical region, especially ENSO, 
influence the evolution of SST anomalies in the North 
Pacific, through atmospheric bridges (e.g., Alexander et al. 
2002). Furthermore, those atmospheric bridges contribute 
to the SST variability on time scales longer than interannual 
(Zhang et al. 1997) and they are known to be one of the con-
tributors for the development of PDO (Newman et al. 2016). 
For this reason, one would expect that including information 
from the tropics would increase the predictability for the 

Fig. 2  Same as Fig. 1, but using data from 1995 to 2010 as the verification period (a–d experiment PA95; e–h experiment TP95; and i–l experi-
ment ET95)
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North Pacific, which was not the case for our results. How-
ever, the Tropical forcing that contributes to the evolution of 
North Pacific SST is the low-frequency variability, and those 
results include the high-frequency data and were focused on 
seasonal forecast. Bearing that in mind, we explore the pre-
dictability with filtered data to evaluate the temporal interac-
tions in improving the predictability for SST, and we present 
and discuss the results in Sect. 4.2.

Despite the general similarities of the skill for the experi-
ments using two different verification periods, there are 
some outstanding differences between them, especially for 
the experiments TP50 and TP95. There is a clear loss in 
skill for longer lead times when forecasting the SST evolu-
tion between 1995 and 2010. A detailed explanation of the 
reasons behind this loss in skill is beyond the scope of this 
paper. However, these results are presented to show that sim-
ilar models can have different results according to the data 
used to train the model. For example, in the period between 
1995 and 2010 there was a major El Niño event (1997/1998), 
whose information probably would dominate the oscillatory 
pattern of the SSTa evolution, thereby adding predictability 
to the linear model. As this information was lost when cross 
validating, this could help to decrease the skill. Additionally, 
the background climate can act to decrease the predictability 
for certain periods (Zhao et al. 2016). The 1995 to 2010 
period corresponds to a change in the background climate, 
represented by a transition between the positive (1977–1999) 
and the negative (1999–2010) phases of the Interdecadal 
Pacific Oscillation (IPO), while the years between 1950 and 

1970 correspond entirely to the negative phase of the IPO 
(Henley et al. 2015).

In the next section we present the comparison between 
LIM and NMME models and present a more detailed dis-
cussion about the limits of predictability as well as remote 
influences in some key regions for the Pacific SST.

4.1.1  NMME and LIM comparison

In order to compare the forecast skill achieved by a simple 
LIM with a more complex and fully nonlinear GCM, the 
results of LIM experiments are contrasted with the NMME 
hindcasts. With that we aim to explore the influence of the 
nonlinearities represented in the NMME models to the LIM 
forecast skill, which may provide some hints of what may be 
the likely cause for the low forecast skill in LIM in certain 
regions. This is done first by analyzing the ACC spatial maps 
of the LIM95 (Fig. 2) and the NMME forecasts (Fig. 3). The 
latter is calculated as correlation between the observations 
and the mean of the hindcasts of the three NMME models 
used here over the period of 1995–2010. Subsequently, the 
LIM and NMME comparisons are also done for some spe-
cific regions and for different initialization times, by com-
paring their mean ACC and RMSE. Figures 4 and 6 show 
the correlations as a matrices with initialization month on 
the x-axis and lead time on the y-axis, for the regions Niño 
3.4 and CCS, respectively. Figures 5 and 7 show the RMSE 
evaluated for each NMME model and the LIM experiment 
that were initialized for boreal winter (December, January 

Fig. 3  Maps of temporal cor-
relation for the SST anomalies 
between the NMME hindcasts’ 
ensemble mean and obser-
vations over the period of 
1995–2010
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Fig. 4  Correlations for each start month and lead time between LIMs forecasts and observations (upper panels) and between NMME models and 
observations (lower panels) for the Niño 3.4 region.  NMMEavg is the mean among the three NMME individual models
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Fig. 5  Seasonally averaged root mean square error of the SSTa fore-
cast for Niño 3.4 made using four different LIM experiments (LIM-
PA50, LIM-TP50, LIM-PA95 and LIM-TP95) and three NMME 

models (CESM1, CanCM3 and CanCM4). The vertical bars represent 
the 95% confidence interval standard errors
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Fig. 6  Same as Fig. 4, but for the CCS
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Fig. 7  Same as Fig. 5, but for the CCS region
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and February) and summer (June, July and August). This 
approach allow us to study if the SST forecast skill in the 
region changes with different forecast periods, and also the 
linearity assumption for the SST dynamics during different 
periods.

In the tropics, the pattern of the NMME and LIM skills 
at different lead times are very similar: the skill maximum is 
located around the dateline and a minimum skill is found in 
the eastern Tropical Pacific and a westward extension, and 
in the far-western Tropical Pacific, particularly at longer lead 
times (9 and 12 months). On the other hand, in the extrat-
ropics there are some remarkable differences between those 
two forecasts systems. While the NMME models have skill 
greater than 0.4 for most of the extratropics and for longer 
lead times, the LIM positive skills are limited to some spe-
cific regions, like near the west coast of North America and 
a circular shaped region in the Northwest.

The forecasts are highly sensitive to initialization months 
for the Niño 3.4 region and this difference is more dramatic 
for the LIM forecast during late twentieth/early twenty-first 
centuries (PA95 and TP95) and for the NMME hindcasts 
(Fig. 4). The forecasts initialized during boreal late spring 
and summer (from May to September) tend to have higher 
skill that persists for longer lead times. On the other hand, 
forecasts initialized before boreal spring (January to April) 
are much less successful, with high skill persisting for no 
longer than 4 months. Other studies have also seen this lack 
in forecast skill for ENSO forecasts initialized before spring 
of the El Niño year and this is known as the “Spring Predict-
ability Barrier” (SPB) for ENSO (Webster and Yang 1992; 
McPhaden 2003; Jin et al. 2008; Duan and Wei 2013; Lopez 
and Kirtman 2014). Another similar characteristic for those 
matrices is that they exhibit a higher skill along their diago-
nal. This occurs when the month that is being predicted has 
more skill independently of the lead time, which tend to 
arise when the skill is a result of impacts that depend on 
the season (Hervieux et al. 2017). It is noteworthy that the 
SST-only LIM overall captures the seasonal discrepancies of 
the NMME skill, for both the models′ average and for each 
individual model. This LIM ability in capturing the seasonal 
variations was also pointed by Newman and Sardeshmukh 
(2017), although those authors used a more comprehensive 
LIM, in which they included wind and sea surface height 
anomalies besides SSTa.

By comparing two essentially different forecast systems, 
LIM, which is an empirical linear model, and the NMME 
models, which are high dimensional nonlinear coupled mod-
els, some considerations can be made about the predictabil-
ity of the nonlinear signals. As stated before, LIM assumes 
that the nonlinear part of the signal is unpredictable, so the 
skill comes basically from the linear part. The similarity of 
NMME and LIM skills for the forecasts initialized during 
boreal late spring and summer can be an indication that the 

nonlinear signals for the following months are essentially 
unpredictable. When initialized during boreal winter, both 
LIM and NMME have low forecast skill at lead times longer 
than 4 months, disregarding some small differences. There-
fore, it is possible that the predictability for the Niño3.4 
region and for the months following the winter is intrinsi-
cally low. This is also true for the eastern and the far-western 
Tropical Pacific: with 6 months of lead time those regions 
have a considerable decrease in forecast skill and with 9 
months the skill is completely lost, both for NMME mean 
and the LIM experiments 3. On the other hand, there are 
some differences between the LIM and NMME skill in cer-
tain regions of the extratropics. It is important to note that 
these discrepancies are not necessarily due to the nonlin-
earities in the predictable signals which the LIM will fail to 
capture. It may also be an indication that the SST-only LIM 
configuration is not the most adequate and there is room for 
improvement of the LIM skill by including other variables, 
such as thermocline depth and ocean heat content, which 
have a greater persistence. Moreover, the prediction skill 
can also be enhanced by adding additional stochastic noise 
to the system (e.g., Majda et al. 1999).

Interestingly, there is a remarkable difference in the skill 
of the forecast for different periods. Although the forecast 
initialized during boreal late spring and summer have higher 
skill persisting up to 8 months, the SPB is much less clear 
for experiments PA50 and TP50. For example, for the TP50, 
there is positive skill up to 12 months for experiments initial-
ized before June. Beyond the SPB, although, PA95 and TP95 
perform better. A plausible explanation for those differences 
can be the occurrence of major El Niño events on the period 
that is being predicted, which can enhance the SPB. In the 
case of PA95 and T95, a major El Niño event has occurred 
(1997/1998). On the contrary, during the period of PA50 and 
TP50 experiments, there was very weak El Niño interannual 
variability.

Those differences can be further explored using the evo-
lution of RMSE with lead time for each NMME model and 
for each LIM experiment, with initialization during winter 
and summer months (Fig. 5). For the initialization dur-
ing the winter, the RMSE of the LIM and NMME models 
forecasts are not significantly different until 5 months of 
lead time. The exception is to the CESM1 model, that per-
forms slightly worse than all the others. From 6 months of 
forecast onwards, the RMSE for the LIM experiment TP95 
starts to grow fast, while the RMSE for the other models 
are still comparable. On the other hand, for experiments 
initialized during summer months, the differences between 
the RMSE of the models are much bigger: LIM experi-
ment PA95 performs better than any other model up to 8 
months, while PA50 and TP50 have comparable RMSE 
with NMME models. Curiously, when excluding the North 
Pacific for the verification period of 1995–2010, the error 
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grows faster already in the second lead month, and in the 
third lead month it has larger errors than any other model. 
Those results reinforce our earlier discussion that in the 
North Pacific the inclusion of the Extratropical data in the 
LIM configuration increases the forecast skill for the trop-
ics, especially when forecasting for the late twenty/early 
twenty-first centuries. This may be an indication that the 
SST-only LIM can capture some of the source of Extrat-
ropical predictability from the tropics.

When considering the CCS region, the LIM forecasts 
have, overall, better skill than the NMME models (Fig. 6). 
LIM and NMME forecasts, although, demonstrate good 
skill across nearly all initialization months up to 6 months 
of lead time (the exception is for CESM1 experiments ini-
tialized during boreal late fall and winter). The matrices 
present the high skill diagonal pattern, as for Fig. 4. For 
example, enhanced predictability is found when forecasting 
for late fall (October/November) and, less evident, for the 
early spring (February–April), which can be seen as two 
bands of high skill extending from the lower right to the 
upper left (exception again is for the CESM1 model). When 
the experiment is initialized during boreal winter months, 
LIM and NMME have similar skill and nearly no signifi-
cant difference in the RMSE up to 6 months of lead time 
(Fig. 7). The exception is for the CESM1 model, that pre-
sents the lowest skill and the biggest RMSE between all the 
models and experiments. Including the tropics (PA) or no 
(ET) in the analysis do not influence in the forecast, with 
the results being very similar when considering same veri-
fication period. However, for the forecasts initialized during 
the summer, the differences are more significant: in general, 
LIM experiments perform better than the NMME models, 
in particular for the ones using the verification period of 
1995–2010. Moreover, including the tropics to train the LIM 
(PA95) makes that the RMSE is the lowest for almost all 
lead times. In opposition, the forecast made for 1950–1965 
without the tropics (ET50) has a smaller RMSE than the 
one including the tropics (PA50). These results suggest that 
the Tropical variability can be a source of predictability for 
the CCS, depending on the period that is being considered. 
Specifically, the ENSO-related variability may add some 
seasonal predictability for the CCS, since in period with 
major ENSO variability (1995–2010) there is a decrease 
in the RMSE when including information from the trop-
ics; on the other hand, in a period with less ENSO vari-
ability (1950–1965), local variability seems to play a more 
important role on the predictability, what can be seen by the 
decease in the RMSE when excluding the tropics. Indeed, 
in a recent study, Jacox et al. (2017) found that the skill 
above the persistence for the CCS derives primarily from 
predictable evolution of ENSO related variability, where the 
mechanism prevails during years with moderate to strong 
ENSO events.

4.2  Interannual and decadal forecasts

The predictability of the interannual and decadal compo-
nents of SSTa in the North and Tropical Pacific Ocean is 
explored using a filtered field of SST to build the LIM, as 
explained in Sect. 3.1. The EOFs field for the decadal, inter-
annual and intraanual components, which the correspondent 
PCs were used to build the propagator matrix, are presented 
in Fig. 8. Not surprisingly, the well-known PDO pattern 
dominates the variability for the decadal component and 
ENSO dominates the variability for the interannual time 
scales.

The ACC maps for the forecast of the interannual compo-
nent is presented in Fig. 9. Although the highest skill regions 
up to 6 months are similar to those presented for the sea-
sonal unfiltered forecast, the values of the ACC are smaller, 
with a maximum skill of 0.6 in those regions (against 0.8 
in the unfiltered experiments). The Extratropical forcing to 
the tropics can also be identified for the interannual experi-
ments by comparing Fig. 9a with e: there is a clear loss in 
the skill for the tropics for the TP experiment, where the 
ACC has a typical value of 0.2. After 1 year of forecast, 
the skill is almost completely lost, with zero or negative 
values for mostly all tropics and extratropics (Fig. 9b, f, 
i). Exception, though, can be found for the EP experiment 
(Fig. 9i), where some low, yet positive, skill is presented 
on the coastal region of North America and in the Western 
Pacific. Although the skill values are smaller, the results 
are similar to those obtained for the unfiltered experiments: 
while the inclusion of the Extratropical data acts to increase 
the predictability in the tropics, the Tropical data degrades 
the skill for the North Pacific in seasonal to interannual time 
scales. Specifically, it is possible that the LIM configurations 
used here capture the SST signal in the PMM mechanism 
that adds some predictability to the tropics on seasonal time 
scales, and contributes to predictability on interannual time-
scales; moreover, the atmospheric bridge mechanism does 
not add forecast skill in the North Pacific for time scales 
shorter than decadal.

One would think that after the skill is lost it can not be 
recovered. Curiously, this is not true for those forecasts: at 
2 years, there is a significant increase in the skill for all the 
experiments, in particular for the experiment including trop-
ics and extratropics. This gain in skill is seen in the North-
eastern Pacific along the coast, in the Western Pacific north 
of the tropics, and in the tropics close to the dateline. The 
skill decreases for the forecast after 3 years, but it remains 
higher than the one at 1 year. Although LIM is able to iden-
tify decaying predictable signals at a certain lead time � (rep-
resented by B� in Eq. 3), a cyclic signal can be recovered 
by the forecast and expressed as an increase in the skill. 
Particularly, this might be expression of the SSTa “reemer-
gence mechanism” (Ma and Deser 1995). According to this 
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mechanism, the decorrelation time scale of midlatitude SSTa 
in successive winters is generally greater than 1 year. During 
winter time, temperature anomalies are formed throughout 
the deep mixed layer. In the spring the mixed layer sud-
denly shallows, and the winter temperature anomalies can 
remain below the thin mixed layer during spring and sum-
mer. Finally, during the fall the mixed layer deepens again, 
and the those deeper temperature anomalies are mixed back 
toward the surface. Although the reemergence is seasonally 
formed, it can affect the PDO variability on interannual to 
decadal time scales (Newman et al. 2003; Schneider and 
Cornuelle 2005). Therefore, the recover in skill after 1 year 
of its damping might be an expression of the interannual 
influence of the reemergence mechanism over the North 
Pacific.

The interaction between a seasonal process driving an 
interannual expression can be better explored by analyzing 
the propagator matrix B , as described in Sects. 3.2 and 3.3. 
Figure 11 shows B at different lead times ( � ), up to 10 years. 
The upscale interaction between seasonal and interannual 
(seasonal modes driving interannual modes) is shown in the 
submatrix B

SI
 . This interaction decreases with lead time, but 

it persists up to 2 years, which can represent the reemergence 
mechanism. On the other hand, the downscale interaction 

(interannual modes driving seasonal modes) do not occur at 
any lead time (submatrix B

IS
).

The forecast for the decadal component of SSTa is 
presented in Fig. 10. There is high prediction skill of the 
decadal part of the signal up to 1 year for the whole North 
Pacific and tropics, with skill values greater than 0.8. The 
exceptions are a circular-shaped region of low skill in the 
Northwest Pacific, being more clear in the ET experiment 
(Fig. 10i). This circular region correspond to the nodal 
region of the first decadal EOF, as shown in Fig. 8a. When 
calculating the EOFs excluding the tropics, this border is 
much more well defined (figures not shown). Indeed, for the 
ET experiment the correlations in the circular-shaped region 
decrease to zero or some negative values in the second year 
and the skill is almost completely lost in the third year of 
forecast, with the exception of a coastal region between 
North Canada and Alaska.

The predictability of the decadal part of SSTa for the 
Tropical region does not seem to be very sensitive to the 
inclusion of the North Pacific to build the LIM, differently 
from the higher frequency variability, which has a signifi-
cant gain in the forecast skill when including Extratropical 
information. There is a loss in skill in the tropics close to 
the dateline in the first year and beyond, when this low skill 

Fig. 8  The three leading EOFs for the North Pacific and tropics for each time scale [(decadal (D), interannual (I) and seasonal(S)], with the vari-
ance explained given in parenthesis
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is spread eastward. This area with low skill is close to the 
nodal region of the EOF2 pattern for the decadal component 
(Fig. 8b), which could explain the difficult of a linear model 
to forecast the SSTa in this region. On the other hand, the 
skill for the western of the dateline remains high until the 
fourth year of forecast (Fig. 10a–h). The decadal variability 
of SSTa in North Pacific, especially in the Western part, 
seems to be highly influenced by the Tropical variability. 
There is a clear loss in the predictability for the extratropics 
when excluding the Tropical region in the analysis. For the 
PA experiment, there is predictability up to the fourth year 
for some regions, while in the ET experiment the predict-
ability is almost completely lost in the third year. Therefore, 
this shows a one-way interaction between North Pacific and 
tropics for the decadal part of the signal, where the tropics 
are a source of predictability for the North Pacific. On the 
other hand, and differently from the higher frequency sig-
nals, the North Pacific does not act to increase the predict-
ability for the tropics. This forcing from the tropics to extra-
tropics is consistent with several studies that have identified 
a communication of the Tropical decadal variability with 
the North Pacific, via the atmospheric bridges (Alexander 
et al. 2002, 2010; Zhang et al. 1997). Moreover, this process 

is identified as one of the contributors to the PDO related 
variability (Newman et al. 2016).

The propagator matrices (Fig. 11) can be used to bet-
ter explore how this forcing works. The modal interactions 
between decadal variability with itself (submatrix B

DD
 ) 

starts to play a role in the third month of lead time, and gets 
stronger with the increasing of lead time. This modal inter-
action can be represented by the communication of Tropical 
decadal variability to the extratropics, as stated before (e.g, 
Newman et al. 2016). Interestingly, though, the interannual 
variability appears to drive decadal variability at longer lead 
times. This effect is shown in the submatrices correpondent 
to the upscale interaction between interannual and decadal 
modes (submatrices B

ID
 , interannual modes driving decadal 

modes). We observe that this modal interaction starts with 
about 6 months and increases up to 10 years. This suggests 
that not only the decadal Tropical variability adds some 
predictability to the extratropics, but also the interannual 
variability. Although with the propagator matrix it is not 
possible to identify the regions where this variability comes 
from, the leading EOFs allow us to identify the patterns 
with that dominate the variability at each time scale (Fig. 8). 
We showed that a PDO-like patterns dominates the decadal 

Fig. 9  Maps of temporal correlation for the interannual component 
of the SST anomalies, for different lead times. LIM was constructed 
using both the decadal and the higher frequency components. a–d 
LIM trained using data for the whole domain (experiment PA); e–h 

LIM trained only with data from the Tropical region (experiment 
TP); i–l LIM trained with data only from the extratropics (experiment 
ET)
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variability, while an ENSO-like patterns dominates the 
interannual variability. Therefore, when excluding the trop-
ics from the model, the predictable signals from the tropics, 
either the decadal and the interannual ENSO, are lost and 
the predictability for the PDO region is damped.

5  Summary and concluding remarks

The forecast skill of Pacific sea surface temperature anoma-
lies (SSTa) on seasonal, interannual, and decadal time scales 
has been tested using a suite of linear inverse models (LIM). 
The forecast skill was first evaluated to the North Pacific 
plus the Tropical Pacific (15◦S–60◦ N) and then separately 
for each of those regions. By separating the variability into 
these time scales and regions, we aimed to identify how 
interactions between time scales affect predictability and 
how the two regions affect each other in driving predict-
able components linked to ENSO or intrinsic mid-latitude 
interactions.

For the seasonal time scale, our results revealed that LIM 
has a good forecast skill ( � > 0.6) in some areas up to 9 
months. However, this skill varied for each region included 
in the model. Specifically, we showed that the inclusion of 
data from the extratropics enhanced the forecast skill of the 

tropics, suggesting that there is a communication between 
those two regions on seasonal time scales. Moreover, since 
LIM assumes that the evolution of a system is approximated 
by linear dynamics, the mechanism associated with this 
interaction might be essentially linear. Therefore, we sug-
gested that this enhanced predictability seen in the Tropical 
regions for LIM-PA can be due to the Pacific Meridional 
Mode (PMM) propagating the mid-latitude SST anomalies 
associated with the North Pacific Oscillation (NPO).

Those results were also contrasted to the GCMs of the 
North-American Multi Model Ensemble (NMME) for two 
regions in the Pacific: Niño 3.4 and the California Current 
System (CCS). Both NMME and LIM forecats have compa-
rable skill for those regions. Specifically, in Niño 3.4 region, 
there is a clear expression of the Spring Predictability Bar-
rier (SPB), when there is a clear decrease in the skill to 
forecast the SSTa for the boreal spring. LIM assumes that 
the nonlinear part of the signal is unpredictable, so this skill 
comes exclusively from the linear part. Since the skill of an 
empirical linear model (LIM) is comparable to the skill of 
a high dimensional nonlinear coupled GCM (NMME) for 
certain months, we suggested that the nonlinear SSTa vari-
ability for this period is either essentially stochastic or not 
well represented in current GCMs.In the CCS, LIM overall 
also has a similar performance with the NMME models: 

Fig. 10  Same as Fig. 9, but for the decadal component of SST anomalies
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both models have good skill across nearly all the initializa-
tion months up to 6 months of forecast. By comparing LIM 
experiments (including or excluding the tropics), Tropical 
and local variability seems to play a role in the CCS vari-
ability, depending on the period that is being considered. In 
a period with high (weak) ENSO variability, the Tropical 
signal increases (decreases) the skill for the CCS forecast.

The forecast skill for a LIM formulated by using modes 
of variability from a filtered time series was performed to 
evaluate the long term predictions. For the interannual part 
of the signal, the extratropics act as a source of predict-
ability to the tropics. Additionally, the regions with the 
highest skill in the interannual forecasts are very similar 
to the ones in the seasonal forecasts. We suggested that 
the PMM mechanism adds predictability to the tropics in 
seasonal to interannual time scales when forecasting up to 
1 year. The LIM configured only with the decadal compo-
nent has good forecast ( � > 0.8) up to 3 years for most part 
of the Pacific, especially for the extratropics and for the 
experiment including the tropics. Therefore, the interac-
tion between tropics and extratropics for the decadal com-
ponents acts the other way around when compared to the 
higher frequency variability: there is a significant increase 

in the forecast skill in the extratropics when including the 
tropics, although the Extratropical region does not act to 
improve the forecast skill for the tropics. We suggested 
that this forcing occurs due to the atmospheric bridge 
mechanism, that is one of the contributors to the PDO-
related variability.

Finally, we explore the coupling among time scales using 
the propagator matrices (Eq. 3), that show the modal interac-
tion between the leading modes of each filtered time scale, 
as presented in Eq. 9. We show that the upscale interac-
tion between interannual and decadal modes persists up to 
10 years, which is an indication that the predictability that 
is added from the tropics corresponds not only to Tropical 
decadal variability, but also the interannual. These results 
indicate the importance of temporal scale interactions in 
improving the forecast skill on decadal timescales.
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Fig. 11  Propagator matrices constructed from the 20 lead EOFs of 
each time scale using data from the whole domain (PA), at various 
lead times. The dotted lines indicated are the boundaries for the sub-
matrices of the interactions between each time scale. B

DD
 , B

II
 and 

B
II

 represent the interaction between each time scale with itself; B
DI

 
and B

DS
 represent the decadal downscale interactions (decadal modes 

driving interannual and seasonal modes); B
IS

 represents the inter-
annual downscale interaction (interannual modes driving seasonal 
modes); B

ID
 represents the interannual upscale interactions (interan-

nual modes driving decadal modes); and B
SD

 and B
SI

 represent the 
seasonal upscale interactions (seasonal modes driving interannual and 
decadal modes)
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