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1.0 Introduction 
Coastal areas are by far the most complex and dynamic of all ocean regions. They 

are important zones for the accumulation and transformation of nutrients and sediments 
derived from terrestrial and atmospheric sources. These areas are also crucial fish 
nursery and foraging grounds and are home to the majority of ocean fish stocks that 
compose our fisheries Approximately 90% of the total marine fish catch is derived from 
continental shelf regions, an area comprising less than 8% of the total ocean area (). The 
proximity of the coastal ocean to terrestrial and fluvial influences complicates the 
underlying coastal ocean dynamics often associated with coastal regions, such as tides, 
coastal trapped waves, shoaling internal waves, upwelling, etc.  Mankind has heavily 
influenced coastal regions by modifying freshwater influx patterns, altering nutrient and 
sediment fluxes from both fluvial and atmospheric sources, and overexploiting fisheries 
resources. One goal in understanding the dynamics of coastal regions is to use this 
knowledge to improve coastal management practices so as to reduce the impact of 
anthropogenic influences. However, gaining an understanding of the mechanisms 
important to answering a host of questions related to coastal ocean regions requires the 
coordinated use of a wide variety of data sets, of both satellite and in situ origin, and 
numerical models. 

Remote sensing products are becoming increasingly available for coastal ocean 
applications (King et al., 2003). These products are typically derived from passive 
reflectance measurements (e.g. sea surface temperature from the Advanced Very High 
Resolution Radiometer, AVHRR; phytoplankton chlorophyll and primary production 
from the Sea-viewing Wide Field-of-view Sensor, SeaWiFS; and, Moderate Resolution 
Imaging Spectroradiometer, MODIS) or active microwave radar reflectance 
measurements (e.g. QuickSCAT for ocean surface wind velocities, and TOPEX and 
Jason-1 for ocean surface altimetric measurements). The capabilities and resolution of 
each of these satellite sensor/data products varies between coastal and open ocean 
regions. For passive remotely sensed data, the higher resolution Local Area Coverage 
(LAC) data are available for coastal regions, while open ocean region studies have 
access primarily to coarser resolution Global Area Coverage (GAC) data. While passive 
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reflectance data sets from coastal regions are more resolved, Case-II waters associated 
with coastal zones makes deriving products, like surface chlorophyll, more difficult and 
prone to increased uncertainties due to higher concentrations of coastal-derived, 
optically-active scalars such as Colored Dissolved Organic Material (CDOM) and 
suspended sediments (Carder et al., 1999). Radar scatterometer (wind velocity) and 
altimeter (sea level topography) data sets involve separate issues related to data quality 
within coastal areas. Radar scatterometer estimates of wind, while well resolved in open 
ocean regions, are unable to resolve the small-scale wind field structures located near 
the coast, where wind measurements are required by circulation models to resolve 
processes such as coastal upwelling. Sea level topographic measurements are even more 
problematic because of the low spatial and temporal resolution of the data coupled with 
the noise issues due to tidal signals in coastal regions. 

Because of the short time and space scales and complex dynamics associated with 
coastal environments, gaining further understanding of these regions remains difficult. 
As a result, methods are now being developed to merge satellite observations with 
models in an effort to understand and eventually predict the observed variability in these 
regions. However, many of the available coastal ocean satellite data sets have yet to be 
used in support of coastal modeling efforts (Table 1). The steps required to develop this 
capability are complex. The matching of observations to model variables, discerning 
between observational and modeling errors, properly constraining the model solutions 
with realistic forcing and boundary conditions and a host of other issues remain 
unresolved.  
 
Table 1. List of presently available satellite-derived coastal ocean variables. 

Measurement Example 
Satellite 
Sensors 

Used in 
Numerical 
Modeling 

References on use of 
satellite data in modeling 
studies 

Sea Surface 
Temperature (SST) 

AVHRR, 
MODIS 

Yes Anderson et al., 2000;  
Fox et al., 2001; 
Di Lorenzo et al., 2004; 
Wilkin et al., 2004  

chlorophyll a SeaWiFS, 
MODIS 

Yes Prunet et al., 1996a,b; 
Semovski et al., 1995; 
Semovski and Wozniak, 
1995; Di Lorenzo et al., 
2004  

Primary Productivity SeaWiFS, 
MODIS 

No N/A 

Chlorophyll 
Fluorescence 

MODIS No N/A 

Total Suspended 
Matter 

MODIS No N/A 

Organic Matter MODIS No N/A 
Coccolith 
Concentration 

MODIS No N/A 

Rainfall TRMM No N/A 
Photosynthetically MODIS Yes Spitz et al., 2001 



J. R. Moisan, A. Miller, E. Di Lorenzo and J. Wilkin 
3 

Available Radiation 
Suspended Solids MODIS No N/A 
Colored Dissolved 
Organic Matter 
(CDOM) 

MODIS Yes Bissett et al., 1999a,b, 
Bissett et al., 2004 

Wind Velocities QuickSCAT Yes Fox et al., 2001 
Sea Surface 
Topography 

TOPEX, Jason Yes Fox et al., 2001;  
Di Lorenzo et al., 2004 

The path towards making use of satellite observations for coastal ocean studies is 
marked with a host of model and algorithm applications, ranging from the radiative 
transfer models that are used to interpret the satellite observations to fully three 
dimensional (3D) coupled numerical circulation/bio-optical models. A wide array of 
numerical modeling activities presently makes use of satellite data to address specific 
coastal ocean-related questions. These models range in complexity from simple 
algorithms to complex systems of time and space dependent coupled partial differential 
equations.  

Because coastal regions possess small space scale and short time varying processes 
and features, models play a crucial role in helping us understand the interplay between 
the various processes that contribute to the final observed dynamic fields. The scales of 
the processes that contribute to the evolution of the observed features are poorly 
resolved by in situ observations and in cloudy regions (such as coastal upwelling 
centers) even by satellite sensors. Numerical models are required to integrate the 
observations into a dynamic modeling framework in order to allow us to test hypotheses 
on coastal dynamics.  

The status of modeling ocean processes has progressed rapidly in the last decade due 
to the increase in computer technologies; improved methods in computational fluid 
dynamics; improved knowledge in ocean circulation and biogeochemical dynamics; and, 
a large increase in the availability of remotely sensed data for model forcing and 
validation (Shchepetkin and McWilliams, 2003; Moore et al., 2004).  Contemporary 
modeling efforts now use satellite data for a variety of purposes, ranging from model 
forcing fields to independent data sets for model validation (Robinson, 1996; Di 
Lorenzo et al., 2004; Wilkin et al., 2004). In coastal regions, where modeling efforts 
require high resolution data sets due to short time and space scales of coastal ocean 
processes, use of satellite data sets is crucial. In this chapter, the variety of ways that 
satellite observations are used to support modeling activities will be presented through 
an overview of present and anticipated future applications. 

2.0 Diagnostic/Analytical Models 
2.1 OVERVIEW OF DIAGNOSTIC MODEL DEVELOPMENT METHODOLOGIES 

Satellite imagery has historically been used in coastal applications as a qualitative 
tool to characterize the spatial structure of coastal ocean features (Bernstein et al. 1977; 
Abbott and Chelton, 1991).  Additional efforts to use these data focused on 
characterizing seasonal and interannual variability (Thomas and Strub 1989, 1990; Strub 
et al., 1990). By far, the dominant approach for using satellite and field data in a 
quantitative sense is to develop algorithms or models that make use of observed 
relationships (empirical algorithms) that require satellite or in situ data as input variables 
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to estimate scalars or processes that cannot be measured from space. A crucial 
application of models using satellite observations involves using Radiative Transfer 
Models (Chapter 1) to estimate water-leaving radiance values near the ocean surface. 
These estimates are used—as shown below—to obtain estimates of optically active 
ocean scalars (chlorophyll a, colored dissolved organic material, etc.). There are a 
growing number of diagnostic models/algorithms presently available for use in the 
ocean remote sensing community (Table 2). Two applications of primary importance to 
coastal ocean ecosystem research are presented below. 
 
Table 2. Diagnostic Models/Algorithms for Ocean Remote Sensing Applications on 
MODIS. 

Estimated Scalar Method References 
Chlorophyll a pigment  Empirical and Semi-

Analytical Models 
O’Reilly et al., 1998; 2000 

Total Suspended Matter Empirical Model Gordon and Clark, 1980 
Diffuse Attenuation 
Coefficient at 490nm 

Empirical Model Gordon and Clark, 1980 

Chlorophyll 
Fluorescence 

Analytical Model Abbott et al., 1982; Abbott 
and Letelier, 1998 

Colored Dissolved 
Organic Matter (CDOM) 

Empirical, Semi-
analytical Models 

O’Reilly et al., 2000 

Absorption Coefficients Empirical, Semi-
analytical Models 

O’Reilly et al., 2000 

Coccolith Concentration Semi-analytical Model Gordon et al., 1988 
Primary Production Empirical and Analytical 

Models 
Iverson et al., 2000; 
Behrenfeld and Falkowski, 
1997a; Howard and Yoder, 
1997 

Phycoerythrin Semi-Analytical Model Gordon et al., 1988 

2.1.1 Case 1: Ocean Chlorophyll a Estimates 

There are three distinct types of models to estimate ocean chlorophyll a using 
satellite reflectance data: empirical, semi-analytical and analytical. Of these, only the 
first two have been widely implemented. Empirical models use in situ observations of 
ocean chlorophyll a to develop a relationship between the apparent optical property 
(AOP) of spectral remote-sensing reflectance ( )rsR λ  or normalized water-leaving 

radiance ( )wnL λ  and chlorophyll a concentrations. A number of these models are 
presented and compared in O’Reilly (1998; 2000). For instance, the OC4 model (version 
4), 
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is a five parameter model that uses a 4th order polynomial to utilize the maximum band 
ratio, R , of three different waveband ratios of the spectral remote-sensing reflectance 

( )rsR λ . The “maximum” function causes the model to switch to alternate band ratios 
when the other band ratios become lower. This band-ratio switching is how many of the 
CZCS pigment algorithms operate (O’Reilly et al., 2000). The majority of empirical 
models fit radiance band ratios (converted to either logarithmic or natural log scales) to 
in situ chlorophyll a data using a variety of functions such as power, hyperbolic, and 
cubic polynomials. These color ratio algorithms work best in Case I waters and do 
poorly in coastal Case II waters, where the increased number of optically-active 
constituents add to the complexity of the ocean color problem. 

Semi-analytical models, the second model type, use relationships that relate Inherent 
Optical Properties (IOPs), typically backscattering ( )bb λ  and absorption ( )a λ  

coefficients, to ( )rsR λ  (Garver and Seigel, 1997; Carder et al., 1999) or ( )wnL λ . 
Semi-analytical models can be implemented as either forward or inverse applications. 
Forward model applications use observations of IOPs, either measured directly or 
estimated from relationships of IOPs and in-water distributions of optically-active 
compounds, such as chlorophyll a or CDOM, to calculate ( )wnL λ  or ( )rsR λ .  Inverse 

model applications use observations of ( )wnL λ  or ( )rsR λ  to calculate chlorophyll a or 
CDOM concentrations (Hoge et al., 1999, 2001; Garver and Siegel, 1997; Siegel et al., 
2003). 

The majority of ocean color models have been developed for application to Case I 
waters, with few exceptions (Doerffer and Fischer, 1994; Carder et al., 1999). A more 
detailed presentation of the issues involved in applying these models to Case II waters 
found in coastal regions is presented in Chapter 6. 

Several new computational techniques are now being used to refine and further 
develop the techniques for using satellite observations to estimate chlorophyll a. Chapter 
9 of this book presents an overview of the various computational methods now under 
employ or development. The historical methodologies used to develop ocean color 
models are based upon either empirical formulations or subjectively defined 
relationships, such as waveband ratios.  Artificial neural network techniques are now 
being used to retrieve chlorophyll a from ( )rsR λ  (Gross et al., 2000; Zhang et al., 
2003) and to support the merger of ocean color data from multiple satellite missions 
(Kwiatkowska and Fargion, 2003). Only a few applications (Tanaka et al., 2000) have 
applied this technique to Case II waters. A recent global application of the 
semianalytical inverse ocean color model of Garver and Siegel (1997) uses a data 
assimilation technique called “simulated annealing” to optimize the IOP model 
parameters (Maritorena et al., 2002).  The multiple satellite merger effort being 
supported by the National Aeronautic and Space Administration’s (NASA) Sensor 
Intercomparison and Merger for Biological and Interdisciplinary Studies (SIMBIOS) 
project is using spectral data assimilation and simulated annealing techniques to develop 
a merged satellite data product. The utility of this new application is that it not only 
provides estimates but also provided the related uncertainties for a number of ocean 
color products. 

2.1.2 Case 2: Satellite-Based Models for Phytoplankton Primary Production 
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Similar to models used to estimate chlorophyll a from spectral remote-sensing 
reflectance, ( )rsR λ , primary production models also fall into three distinct categories, 
empirical, semi-analytical and analytical. Empirical models that use chlorophyll a 
estimates to predict primary production were developed prior to the capability to 
measure chlorophyll a using satellites. Balch et al. (1989a) presents a history of the 
development of these initial model efforts (Table 3) that began with Ryther and Yentch 
(1957), and Balch and Byrne (1994) define the various problems encountered in 
estimating primary production from space. 
 
Table 3. Models for phytoplankton primary production estimates.   

Reference Type1 Product Required Data Input 
Ryther and 
Yentch, 1957 

E photosynthetic rate at 
light saturation 

chlorophyll a 

Talling, 1957a, b E depth-integrated primary 
production 

irradiance, IK 

Lorenzen, 1970 E depth-integrated primary 
production 

surface chlorophyll a 

Smith and Baker, 
1978 

E primary production chlorophyll a 

Smith  et al., 1982 E primary production chlorophyll a 
Brown et al., 1985 E mean euphotic zone 

production 
chlorophyll a 

Eppley et al., 1985 E depth-integrated primary 
production 

chlorophyll a, 
temperature, day length 

Platt (1986) E primary production surface light intensity, 
chlorophyll a 

Balch et al., 1989a S-A surface and depth-
integrated primary 
production 

pigments and temperature 

Balch et al., 1989b S-A surface and depth-
integrated primary 
production 

pigments, temperature, 
and light 

Behrenfeld and 
Falkowski, 
1997a,b 

S-A depth-integrated primary 
production 

temperature and 
chlorophyll 

1E: Empirical; S-A: Semi-analytical; A: Analytical 
 

Analytical models for calculating the depth-integrated, daily primary production, Π , 
[mg C m-2] that resolve spectral, temporal and depth variability, termed WRMs for 
Wavelength Resolving Models (Falkowski et al., 1998), attempt to incorporate all of the 
physical, bio-optical and physiological processes that are involved in regulating net 
primary production. The explicit analytical model for  
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where ( , , )t zλΦ  is the quantum yield for photosynthesis for available radiance [mol C 

(mol quanta)-1], 0 ( , , )E t zλ  is the available incident spectral solar radiance [mol quanta 

m-2 s-1 nm-1], * ( , , )pha t zλ  is the chlorophyll-specific absorption [m2 (mg chla)-1], 
( , )Chl t z  is the in situ concentration of chlorophyll a [mg chla m-3], and ( , )R t z is the 

loss term for respiration [mg C m-3 s-1] due to losses of fixed carbon from photosynthetic 
respiratory processes and nighttime respiration. The factor of 12 is a simple conversion 
term [12 mg C (mol C)-1]. 

These models are termed semi-empirical because, as with the ocean color models, 
they require empirical relationships to provide model closure, in this case relationships 
that link the variables ( , , )t zλΦ  and * ( , , )psa t zλ to environmental conditions, such as 
light or temperature, that can be estimated by satellite observations or 
simulated/predicted using advanced numerical models (Moisan, 1993; Bissett et al., 
1999b). For instance, Moisan and Mitchell (1999) developed a modified version of the 
WRM, similar to that developed earlier by Kiefer and Mitchell (1983), such that the 
quantum yield for growth and the chlorophyll absorption relationships were quantified 
using temperature and light dependent empirical relationships. Using these relationships, 
it is possible to obtain estimates of daily primary production using satellite-based 
measurements of sea surface temperature, chlorophyll and photosynthetically available 
radiance (PAR). 

By integrating the WRM equation over the visible spectrum of available radiance the 
equation is modified into a Wavelength-Integrated Model (WIM). The actual integration 
of equation 13.2 must be carried out using the integration by parts technique, creating a 
more complex model equation. In practice this is not done (Falkowski et al., 1998). 
Instead, a daily primary production models is developed that is devoid of wavelength-
dependent terms such that  

     ( )24

0 0
( , ) ( , ) ( , ) ( , )euz hrs

hrs
t z PAR t z Chl t z R t z dt dzϕ∏ = −∫ ∫ ,                              [13.3] 

where ( , )t zϕ  is the chlorophyll a specific quantum yield of photosynthesis for 
absorbed PAR [mg C (mol quanta mg chla m-3)-1] (similar to the product of 

( , , )t zλΦ and * ( , , )psa t zλ ) and ( , )PAR t z  is the Photosynthetically Available Radiance 
[mol quanta m-2 s-1]. 

Further reductions can be made to these primary production models by creating a 
Time-Integrated Model (TIM), such that 

     ( )0
( ) ( ) ( )euz bP z PAR z Chl z dz∏ = ∫ ,                                                                   [13.4] 

where ( )bP z  is the daily-integrated chlorophyll-normalized photosynthetic rate at depth 
that incorporates the respiration and quantum yield terms [mg C (mol quanta mg chla m-

3)-1], ( )PAR z and ( )Chl z are the depth-varying, time-averaged photosynthetically 
available radiance and chlorophyll a, respectively. This model can be further simplified 
by integrating over the depth interval between the surface and the depth of the euphotic 
zone. The resulting Depth-Integrated Models (DIMs) become simplified to the level that 
the equations fall into the category of the numerous other empirical-based models from 
earlier efforts (See Table 3). A round-robin comparison of the ability of a number of 
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primary production models based upon surface chlorophyll, temperature, and irradiance 
is presented by Campbell et al. (2002). 

The majority of the ocean phytoplankton primary production models, if not all, are 
based upon tedious, primarily subjective, efforts to develop relationships that utilize 
satellite-derived observations of key environmental variables such as surface 
chlorophyll, temperature, and radiance. As with the development of ocean color 
algorithms, new applied math and computational techniques are becoming available that 
offer new avenues for creating more sophisticated—though likely more complex—
phytoplankton primary production models. Some of these applications include neural 
networks, genetic algorithms, genetic programming, and fuzzy logic (See Chapter 9), 
and the host of available data assimilation techniques. With the establishment of high 
quality primary productivity data sets (Balch et al., 1992), development of more 
accurate and sophisticated productivity models are now under development.  

3.0 Deterministic Models 
Beyond the realm of diagnostic models or algorithms that are used with satellite data 

sets to estimate ocean variables such as chlorophyll a are the more sophisticated 
dynamic models that have been developed to characterize the time evolution of ocean 
variables. These models are comprised of systems of coupled ordinary or partial 
differential equations and are solved through the use of numerical integration techniques 
and high performance computers. Several reviews (Franks, 1995; Hofmann and Lascara, 
1998) present overviews on the variety of interdisciplinary, coupled 
circulation/biological models that have been used for marine ecosystem research. These 
modeling efforts range from simple time-resolved (spatially-homogeneous) box models, 
to depth-resolved, one-dimensional (1D) models, to fully integrated coupled three-
dimensional (3D) circulation/biogeochemical models. 

A wealth of biogeochemical models have been developed for open ocean regions 
such as Ocean Weather Station Papa (Fasham, 1995; Antoine and Morel, 1995; McClain 
et al., 1996; Signorini et al., 2001), Burmuda-Atlantic Time-series Station (BATS) 
region (Fasham et al., 1990; Doney et al., 1996; Hurtt and Armstrong, 1996; Spitz et al., 
1998; Hurtt and Armstrong, 1999; Bissett et al. 1999a,b; Spitz et al., 2001), Equatorial 
Pacific (Christian et al, 2002a,b), and the Northeast North Atlantic (Fasham et al., 
1999). The majority of these efforts were in support of the recent scientific program 
called the Joint Global Ocean Flux Study (JGOFS) that focused on developing an 
understanding of the processes controlling carbon and nitrogen fluxes in the open ocean 
in order to close the carbon and nitrogen budgets in these regions.  

3.1 BOX MODELS 

Box models continue to play an important role in addressing specific coastal ocean 
science questions, especially those related to carbon and nutrient fluxes (Gordon et al., 
1996), and they support the development of more complex (1D and 3D) models by 
providing a simple numerical environment to test new model formulations (Moisan et 
al., 2002).  Also included in the box model category are the bulk mixed-layer models 
applications of Fasham et al. (1990) that have been successfully applied to several data 
assimilation studies in open ocean regions (Spitz et al., 1998, 2001). Box models have 
historically been used in coastal regions as tools to study ecosystem and trophic level 
interactions (Hofmann and Lascara, 1998, Olivieri and Chavez, 2000), biogeochemical 
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cycling between deep and surface waters of the ocean (Broecker and Peng, 1982) and 
volume, salt and heat conservation in coastal embayments and larger inland seas 
(Pickard and Emery, 1990).  The latter effort uses simple mass balance equations for salt 
and water to derive information on turnover time scales or residence times for coastal 
estuaries and bays. These residence time scales are an important parameter for 
estimating the fraction of carbon and nutrient fluxes from fluvial sources that reach the 
coastal ocean (Nixon et al., 1996). Because present coastal ocean models do not resolve 
these small estuaries and bays and forcing fields for coastal inputs of nutrients and 
carbon are limited to regions not affected by tidal influence, estimates of these turnover 
time scales are important for linking the fluvial nutrient and carbon fluxes to the coastal 
models at the appropriate level. 

3.2 ONE-DIMENSIONAL (VERTICAL) BIOGEOCHEMICAL MODELS 

The primary forcing conditions that control the time evolution of biogeochemical 
processes in many of the regions of the ocean occur through vertical processes such as 
advection and diffusion of nutrients, vertical attenuation of solar radiation and sinking of 
particles. While circulation and diffusion processes are three-dimensional in nature, it 
has been demonstrated (Gill and Niiler, 1973; Moisan and Niiler, 1998) that over large 
enough spatial scales, the seasonal variability of physical features such as temperature, 
salinity, nutrients, etc. is forced primarily through vertical processes.  Many open ocean 
modeling efforts have made use of this quality to develop one-dimensional (1D), 
vertical models for studying open ocean biogeochemical processes (McGillicuddy et al., 
1995; Doney et al., 1996; Bissett et al., 1999a,b). It is worthwhile to note here that the 
work of Bissett et al. (1999a,b) is the first to simulate both apparent and inherent optical 
properties.   

While 1D models are ideally suited for open ocean applications, they have also been 
applied to several coastal regions to investigate processes such as dissolved organic 
cycling (Anderson and le B. Williams, 1998) and benthic denitrification and nitrogen 
cycling (Balzer et al., 1998) and plankton ecosystems for upwelling regions (Moloney, 
et al., 1991; Moisan and Hofmann, 1996).  The application of 1D models to coastal 
biogeochemical studies (Moisan and Hofmann, 1996; Soetaert et al., 2001) requires 
additional physical constraints in order to resolve those processes, such as upwelling, 
that are not commonly encountered in open ocean applications, with the exception of 
open ocean upwelling areas such as the Equatorial Pacific (Friedrichs, 2001).  

Vertical 1D biogeochemical models are composed of systems of coupled partial 
differential equations that govern the time and space distribution of the non-conservative 
scalars, such as nutrients, phytoplankton, detritus, dissolved organics, etc. The general 
form of this equation is written as:  

     sink nudge clim

( )
( )z B

B B Bw B
K w B B S

t z z z z
τ

∂ ∂ ∂ ∂ ∂
= − − − − +

∂ ∂ ∂ ∂ ∂
,                         [13.5] 

where B is a non-conservative quantity (one of the variables in the biogeochemical 
model), zK is the depth-dependent, vertical eddy kinematic diffusivity, w  is the depth-

dependent vertical (upwelling/downwelling) velocity of the fluid, and sinkw is the vertical 

sinking rate of the biogeochemical components. An additional term nudgeτ is also used at 
times to specify the time scale over which the biogeochemical components are nudged 
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back to the background climatologies of the individual model components, climB . The 

net local source and sink terms BS  can be prescribed to simulate processes such as di-
nitrogen fixation, denitrification, or loss of material to higher trophic levels. One 
additional item to note is that the vertical advection term in coastal applications should 
be written in the flux divergence form so that the effects due to strong vertical 
divergence/convergence in the vertical velocity field ( /w z∂ ∂ ) are appropriately 
accounted for and mass and volume are conserved. 

Several applications of these 1D models focus on coastal ocean regions.  For 
instance, Moisan and Hofmann (1996) use a food web model coupled to a multi-nutrient 
(nitrate, ammonia, silicate) biogeochemical model to compare the cycling of nitrogen in 
both an onshore and offshore region of the California Current System.  Model results 
from 1D models are commonly used to assist in parameterization of 3D coastal models 
(Moisan et al., 1996; Vichi et al., 2003). 

Efforts at modeling nitrogen budgets in the coastal regions are now coupling benthic 
biogeochemical models to pelagic biogeochemical models. An overview of the 
approaches used in pelagic and benthic biogeochemical model coupling is presented by 
Soetaert et al. (2000). Soetaert et al. (2001) developed a 1D model to study 
biogeochemical processes as part of the Ocean Margin Exchange in the Northern Gulf 
of Biscay (OMEX). In this study, the model resolves the vertical structure of both water 
column (NO3, NH4, O2, Phytoplankton C and N, Detrital C, Detrital N, Zooplankton C, 
and Suspended matter) and sediment (NO3, NH4 and O2) constituents. The addition of a 
vertically resolved sediment model, while providing important estimates on rate of 
nutrient regeneration and denitrification rates, has significant drawbacks due to the 
higher spatial resolution (mm vs m) required to resolve vertical sediment processes. For 
instance, in the Soetaert et al. (2001) modeling effort, the time step for the fully coupled 
sediment-pelagic model was 10 times slower than for the pelagic model alone. However, 
resolving these processes is especially critical in coastal modeling efforts because of the 
uncertainty in the total amount of denitrification that occurs in coastal regions. Inclusion 
of sediment processes gives models a capacity to predict the total source of inorganic 
nitrogen through sediment remineralization as well as to predict the amount of organic 
nitrogen lost through denitrification processes (Seitzinger and Giblin, 1996, Balzer et 
al., 1998). 

Recently, Moisan et al. (2004) have used a fully coupled biogeochemical model with 
nitrogen, carbon and oxygen pathways (Figure 1) to study carbon and nutrient pathways 
in the California Current System as a tool to configure a fully 3D coupled circulation 
biogeochemical model (Stolzenbach et al., 2004). One of the important components of 
this effort was the development of a particle coagulation model. In addition, oxygen 
profile data were used to help parameterize the two competing processes of particle 
sinking and remineralization processes—a fast sinking, rapidly remineralizing material 
is similar to a slow sinking, slowly remineralizing material, in that both release nutrients 
back into the water column at a similar rate. As in the work of Oguz et al. (2000) and 
other studies, oxygen profiles play an important role in optimizing the values of the 
parameters that influence the vertical flux of carbon and nitrogen.  

In the Moisan et al. (2004) model (Figure 2), the microbial loop dynamics from Spitz 
et al. (2001) with bacteria, dissolved organic carbon and dissolved organic nitrogen and 
an inorganic carbon cycling model with alkalinity and dissolved inorganic carbon 
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(following Ocean Carbon-cycle Model Intercomparison Project [OCMIP] guidelines, 
Orr, 1999; Lewis and Wallace, 1998) were added to the pelagic model from Stolzenbach 
et al. (2004) which contained multiple nutrients (NH4, NO3), phytoplankton, a dynamic 
phytoplankton carbon to chlorophyll ratio (θ), zooplankton, small and large detrital 
nitrogen. In its present state, the model is able to fully resolve pelagic carbon and 
nitrogen processes, but a total of 15 model components are required. As more aspects of 
the coastal carbon are investigated the number of components is expected to grow 
significantly. For instance, these models continue to exclude phosphate cycle dynamics, 
yet the debate continues as to whether specific coastal regions are phosphate versus 
nitrate limited (Hecky and Kilman, 1984).  
 
Figure 1. Present 
biogeochemical model 
configuration for U.S. West 
Coast Carbon Cycle 
modeling program. Not 
shown are the boxes for 
Oxygen, TIC, and 
Alkalinity. Carbon, 
Nitrogen, Phosphate, and 
Oxygen pathways are 
presently being resolved. 
All of the model pathways 
follow stoichiometric 
balances while maintaining 
variable C:N:P ratios for 
different model variables. 
 

While it remains 
unlikely that 1D models will 
provide the ocean carbon 
cycling community with the 
final estimates that are 
required for closing the 
global carbon and nutrient 
budgets, 1D models will 
continue to play an important role in developing new model configurations and in 
parameterization of the more complex, 3D models. 

3.3 THREE-DIMENSIONAL COUPLED CIRCULATION/BIOGEOCHEMICAL 
MODELS 

Applications of three-dimensional (3D) ocean circulation models have typically been 
carried out under limited spatial domains, but the number of applications of the models 
has risen to encompass a significant fraction of the global continental margin domain 
(Figure 3). These 3D models are presently being configured to resolve circulation 
processes along many continental margin regions of the world ocean (Table 4). These 
coupled models generally employ circulation models that use the standard primitive 
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equations to solve the time varying structure of the circulation fields (Haidvogel and 
Beckmann, 1999). The mode of integration primarily occurs using finite difference 
techniques, although other efforts have employed finite-element techniques (Lynch et 
al., 1996). In recent years, additional refinements to grid structures have incorporated 
grid nesting schemes that allow for enhanced resolution of the circulation processes in 
regions along the coast (Weingartner et al., 2002, Marchesiello et al., 2001 and 2002).  
Additionally, other coastal circulation models are using model outputs from basin or 
global scale model domains as input boundary conditions (Mantua et al., 2002). 

Figure 2.  A comparison of the results (left panels) from a vertical (1D) coupled 
physical biogeochemical model to actual data (right panels) from an offshore region of 
the California Cooperative Fisheries Investigation (CalCOFI) domain (Moisan et al., 
2004). For much of the world oceans, including coastal regions, the vertical structure of 
many of the biogeochemical features, such as nutriclines or chlorophyll maximums, are 
maintained by vertically dependent processes, such as light attenuation and vertical 
nutrient diffusion. The thick black line indicates the mixed layer depth. 
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The role of the physical circulation model in the coupled modeling system is to 
provide the biogeochemical model with information on the effects of vertical and 
horizontal advection and diffusion. In the 3D coupled models, the biogeochemical 
model is composed of a system of coupled partial differential equations that govern the 
time and space distribution of the non-conservative scalars, such as nutrients, 
phytoplankton, detritus, dissolved organics, etc. The general form of the equations is 

     sink nudge clim( ) ( ) ,B

B
K B v v B B B S

t
τ

∂
= ∇ ∇ − + ∇ − − +

∂
! !

" "
                               [13.6] 

where K is the eddy kinematic diffusivity, B is a non-conservative quantity (one of the 

seven variables in the biogeochemical model), v
"

is the 3D velocity of the fluid, and 

sinkv
"

is the vertical sinking rate of the biogeochemical components. The velocity, v
"

, and 
kinematic diffusivity, K , fields are obtained from the 3D circulation model. The 
term nudgeτ is an optional nudging term that describes the rate that the biogeochemical 
components are nudged back to the background climatologies of the individual model 
components, climB , and BS are the net local source and sink terms that describe the 
interlinking biogeochemical pathways between each of the model variables.  The 
number of components used in the coupled 3D models has ranged from as low as 4 
(Gregg and Walsch, 1992) to as high as 66 (Bissett et al., 2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. A global chart depicting a number of currently implemented coastal, coupled 
3D circulation/biogeochemical models. See Table 4 for a complete listing of the 
modeling efforts represented within this figure. 

Table 4. Coastal Three-Dimensional Coupled Circulation/Ecosystem Models. 
Coastal 
Region 

Physical 
Model 

Ecosystem 
Model 

Application References 

Alaska/U.S. 
West Coast  

ROMS NPZD Fish Population 
Dynamics 

Weingartner et 
al., 2002 

Alaskan 
Gyre 

ROMS NPZD Zooplankton 
Dynamics 

Weingartner et 
al., 2002 
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U.S. West 
Coast 

ROMS Moisan et al., 
2004 

Biogeochemistry 
Carbon Cycle 

Stolzenbach et 
al., 2004 

U.S. East 
Coast 

ROMS Moisan et al., 
2004 

Biogeochemistry 
Carbon Cycle 

Moisan et al., 
2004 

LEO-15 
New Jersey 

ROMS ECOSIM Bio-optics, 
Biogeochemistry 

Bissett et al., 
2004 

California 
Bight 

ROMS Moisan et al., 
2004 

Ecosystem, Data 
Assimilation 

Miller et al., 
2000 

South Africa ROMS Individual Based 
Model, NPZ 

Small Pelagic Fish 
Recruitement 

Mullon et al., 
2002; Penven 
et al., 2001 

South China 
Sea 

Semtner Fasham et al., 
1990 

Ecosystem, 
Nutrient Flux 

Liu et al., 2002 

Black Sea POM Complex, see: 
Oguz et al., 2002 

Ecology, 
Biogeochemistry 

Oguz et al., 
1995 and 2002 

Adriatic Sea POM Complex, see: 
Vichi et al., 2003 

Nitrate Dynamics, 
Biogeochemistry 

Vichi et al., 
2002 

3.3.1 Biogeochemical Processes 

There are a host of processes that must be resolved in any 3D coupled model that is 
focused on simulating coastal ocean dynamics.  At present, most of the coupled 
circulation biogeochemical applications address specific questions that relate only in 
part to the full coastal biogeochemical system. In order to correctly simulate the full 
biogeochemical system, even at a minimum or gross level of resolution, a number of 
critical biogeochemical model components must be included. The key components 
include: (a) pelagic ecosystem processes, (b) microbial loop processes, (c) multiple 
nutrients (NH4, NO3, SiO4, PO4, Fe), detrital (non-Redfield) dynamics, dissolved 
organic material (non-Redfield) dynamics, marsh and submerged aquatic vegetation 
(SAV) processes, benthic/sediment layer processes, and inorganic carbon dynamics that 
specifically follow Ocean Carbon-cycle Model Intercomparison Project (OCMIP, Orr, 
1999; Lewis and Wallace, 1998) conventions/guidelines. With respect to coastal 
systems, it is important that the processes of nitrification and denitrification be 
specifically included. On the global scale, denitrification in coastal regions plays an 
important role in balancing the rate of ocean di-nitrogen fixation (Galloway et al., 1996). 
Also, processes in coastal regions play an important role in determining the amount of P 
that ultimately makes it way into the ocean interior. As mentioned in the 1D modeling 
section, the debate on the relative roles that P and N dynamics play in global ocean 
productivity on long time scales continues, and developing an appropriate coastal model 
to address this is crucial for correct carbon budget estimates on long as well as short 
time scales. One note of caution, creating models capable of simulating non-Redfield 
ratio dynamics—i.e. C:N:P ratios vary for DOM and POM depending of relative 
recycling/production rates—rapidly increases the level of complexity or number of 
model components with even a simple 8 component model (Figure 1). Care must be 
given to include only those processes that are crucial for accurate simulations in order to 
reduce the computational requirements and analysis complexity. 
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3.3.2 Forcing and Boundary Conditions  

A wide range of forcing and boundary conditions are required to carry out 
reasonable and appropriate simulations of these 3D coupled models. The most difficult 
issue arising from trying to implement these models is open boundary conditions along 
the lateral open boundaries. Some recent efforts to develop improved open boundary 
conditions have been used by Marchesiello et al. (2001) in U.S. West Coast simulations. 
Other efforts have used larger basin scale circulation models to provide the necessary 
boundary conditions to force their coastal model using a 1-way nested configuration—
information only passes from the large-scale model to the smaller scale coastal model. 

Air-sea boundary conditions, besides requiring the general suite of heat and salt 
fluxes, also require estimates of airshed wet/dry deposition for specific model 
constituents such as NH4 or POC/PON, and detailed parameterization for air-sea gas 
transfer. Because of the real lack of adequate data on all of the wet/dry deposition fluxes 
(Prospero et al., 1996), these have either been ignored or poorly estimated. Air-sea flux 
of gases is traditionally carried out using the “gradient method.” This method contains 
significant errors (factor of 2; Takahashi et al., 1997) due to wind speed parameterized 
estimates of the piston pumping velocity. In coastal regions, additional factors, such as 
increased surfactant levels, may contribute to the total error. 

Forcing or boundary conditions at the coast should account for fluvial and consider 
groundwater (especially in karst plane regions) inflow into the continental shelf regions. 
Given that the populations of humans in the coastal regions continues to increase and 
land use practices continue to change and add stress to these regions, a number of 
factors should be considered when addressing this flux category. In a number of 
countries, freshwater flux recordings have been taken over the past tens of years and can 
be used to develop simple forcing conditions such as local climatologies. The situation 
changes when it comes to assessing the amount of fluvial Dissolved Organic Material 
(DOM), Particulate Organic Material (POM) or nutrient load that would ultimately 
reach the ocean margins.  This issue is not a simple one to address and will require a 
significant level of effort to resolve. However, it is a crucial step in developing models 
that will be of practical use for land management issues. 

4.0 Data Assimilation Efforts Using Deterministic Models 
4.1 DATA ASSIMILATION FOR 1D BIOGEOCHEMICAL MODELS 

The term “Data Assimilation” encompasses a wide range of applications. For 
instance, some aspects of data assimilation are simple data insertion or melding 
techniques where model solutions are nudged back into data compliance or blended with 
observations using techniques that guarantee dynamical consistency during periods 
when data are available (Robinson, 1996; Lozano et al., 1996; Robinson et al., 1996; 
Anderson et al., 2000; Anderson and Robinson, 2001). Other methods seek to minimize 
the errors between model solutions and observations (satellite or otherwise) by carrying 
out parameter or initial condition optimization. Efforts to use data assimilation to 
develop biogeochemical models have primarily focused on using data assimilation 
techniques for model parameter estimation (Table 5).   

A large comparative data assimilation effort by Vallino (2000) tested the ability of 
various data assimilation methods to assimilate mesocosm experiment data into a marine 
ecosystem model. The results of this effort demonstrated a number of ongoing concerns 
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facing implementation of data assimilation into ecosystem model development. Of the 
12 data assimilation methods tested in this effort, no two solutions to the parameter set 
were similar. To date, there is no data assimilation method that has been accepted as 
being more appropriate than any other method. Indeed, no one method is available that 
can guarantee the parameter set solutions correspond to the parameter set that provides 
the global minimum error.  

 
Table 5. Parameter optimization methods used in ecosystem models. 

DA Method References 
Adjoint Lawson et al. 1995, 1996; Matear and Holloway, 1995; 

Prunet et al., 1996a,b; Spitz et al., 1998, 2001; 
McGillicuddy et al., 1998 

Markov chain Monte 
Carlo 

Harmon and Challenor, 1997 

Simulated Annealing Matear, 1995, Hurtt and Armstrong, 1996, 1999; 
Vallino, 2000 

Conjugate 
Direction/Gradient 

Fasham and Evans, 1995; Vallino, 2000 

Variational Assimilation Prunet et al., 1996a,b 
Simplex Algorithm  Vallino, 2000 
Genetic Algorithm Vallino, 2000 

 
There are several important considerations that need to be addressed when 

assimilating data into models. A workshop to investigate the issues facing data 
assimilation of biological data in 3D coupled models identified a number of factors that 
must be dealt with for proper data assimilation applications (Robinson and Lermusiaux, 
2000). With regard to the use of satellite data in data assimilation applications, there are 
three specific concerns that need to be addressed.  

First, it is important to determine how the satellite estimated or in situ measured data 
equate to the model variables being simulated. This is especially true for ecosystem 
models where the definitions of model variables may be dramatically different from the 
working definition of the data being collected. For instance, models that attempt to 
simulate bacterial dynamics often represent bacteria in terms of the amount of nitrogen 
per unit volume [mmol N m-3] whereas in situ data sets measure bacteria in terms of cell 
per unit volume (Spitz et al., 2001). Conversions between bacterial cell counts are not 
straightforward because at present there is no universally accepted value for converting 
bacterial cell counts into nitrogen or carbon biomass (Carlson et al., 1996).  In addition, 
a number of studies have shown that up to 25% of the enumerated bacteria may in fact 
be prochlorophytes rather than the assumed heterotrophic bacteria (Sieracki et al., 1995; 
Carlson et al., 1996); and, it is now widely recognized that the metabolic state, dead vs. 
living vs. senescent (LeBaron et al., 2001), of individual bacteria cells varies widely 
with the majority of the cells being either senescent or dead.  

With regard to the use of satellite data sets, the primary concern is in matching 
satellite estimates of chlorophyll a to estimates of phytoplankton nitrogen—the limiting 
nutrient and primary “currency” used within ocean biogeochemical models, e.g. Fasham 
et al., 1990. Early attempts of using nitrogen-based models to simulate in situ 
chlorophyll a simply assume constant C:Chl a [mmol C mg Chl a-1] or N:Chl a [mmol 
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N mg Chl a-1] ratios for carrying out the conversions to chlorophyll a concentrations 
(Hofmann and Ambler, 1988). In fact, the majority of ocean biogeochemical models in 
use today continue to use constant C:Chl a ratios (McClain et al., 1996; Signorini et al., 
2001), though a number of modeling efforts have begun to include dynamic chlorophyll 
a pools (Doney et al., 1996; Spitz et al., 1998; Hurtt and Armstrong, 1999; Bissett et al., 
1999a,b; Spitz et al., 2001). The wide variability of the phytoplankton chlorophyll a to 
carbon ratio (Geider, 1987) makes it an important parameter to resolve in order to carry 
out comparisons between model solutions and observational data sets. Only recently 
have modeling efforts included dynamic chlorophyll a to carbon ratios (Spitz et al., 
1998,2001) for both ecosystem modeling and data assimilation application.  

The second issue concerns the matching of model solutions to satellite observations.  
There are primarily two methods presently being used to achieve this. One method 
involves matching model-simulated variables, e.g. chlorophyll a, to satellite-derived 
values.  Smith (1981) presents an integral approach to compare in situ profiles of 
chlorophyll a, ( )Chla z [mg Chl a m-3], with satellite-derived estimates of ocean 

chlorophyll a, satChla , such that 

     ( ) ( ) ( )90 900 0
2 2

0 0

z z
K z dz K z dzZ Z

satChla Chla z e dz e dz
− −

= ∫ ∫∫ ∫ ,                     [13.7] 

where 90Z  is the depth [m] above which 90% of the upwelling light field is generated, 

and ( )K z  is the diffuse attenuation coefficients [m-1]. An alternative, more 
sophisticated (but presently unimplemented) method is to directly simulate the IOPs, 
such as backscattering ( )bb λ  and absorption ( )a λ  coefficients (e.g. Bissett et al., 
2004), and use a forward optical model (e.g. Garver and Seigel, 1997; Carder et al., 
1999) to predict the spectral remote-sensed normalized water-leaving radiance ( )wnL λ . 

The modeled quantities of ( )wnL λ  are then available for directly comparing against 

satellite remotely-sensed ( )wnL λ  values. 
The third issue is related to differentiating between model and satellite errors. Both 

model solutions and satellite data have significant sources of error. Even direct 
comparison of model solutions and satellite data against in situ observations remains 
complex (Figure 4). This is because the errors associated with model solutions and 
satellite calibrations are highly variable in space and time.  This is especially true for 
satellite data in coastal regions, where the presence of Chromophoric Dissolved Organic 
Matter (CDOM) and suspended sediments create Case II water conditions that ocean 
color models/algorithms perform poorly within, and where coastal ocean models are 
unable to resolve many of the smaller scale features and additional biogeochemical 
coastal processes. Any comparisons between model performance and satellite or in situ 
observations must be carried out using valid statistical techniques, and all comparisons 
should avoid the extreme temptation to subjectively note that the model solutions “look 
good” when compared to satellite or in situ observations. 
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4.2 ASSIMILATION OF SATELLITE DATA INTO COASTAL OCEAN MODELS 

In principal, assimilating satellite data into coastal ocean models is no different than 
any other data type.  Huge volumes of satellite data, however, normally require 
smoothing or sub-sampling to reduce the total number of observations for easier 
manipulation and for removing redundancies among closely spaced data when the 
model grid is coarser than the satellite data grid.  

Additional considerations arise when carrying out spatial comparisons between data 
and model grids of multiple resolutions, as often occurs. A statistical approach is 
required to allow the model errors to be separated into locational versus quantity errors, 
the latter being more related to data assimilation cost function determination (Pontius, 
2002). 

Figure 4. The April mean chlorophyll a estimates obtained from a coupled 3D 
circulation biogeochemical model is compared to SeaWiFS satellite estimates and in situ 
observations collected along two California Cooperative Fisheries Investigation 
(CalCOFI) lines. In the coastal regions, the 3D model estimates along the CalCOFI 
Line-70 (A) agree better with the in situ observations than do the SeaWiFS satellite 
estimates. The reverse is observed along the CalCOFI Line-90 (B).   
 

Depending on the application of the assimilated solution, different techniques may 
be used to constrain the models (Bennett 1992; Wunsch 1996; Lermusiaux and 
Robinson 1999). These techniques are broadly grouped into “strong constraints” (where 
no artificial forcing terms are imposed on the dynamics) and “weak constraints” (where 
artificial forcing is allowed) formalisms. Strong constraints are more appealing when 
one wishes to diagnose the dynamics of an evolving flow according to the dynamics 
allowed by the model.  They are also more useful when making forecasts, since the 
artificial forcing is not predictable.  Weak constraints are more appealing when one 
wishes to make the most accurate maps of the fields.  They are also useful in initializing 
forecasts. 

Among the weak constraint techniques are ‘direct insertion’, where model values are 
simply changed to observed values at some time step, ‘nudging’, using a relaxation term 
to force the model over some time interval towards observed values, and ‘blending’, 
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‘optimal interpolation’ or ‘Kalman filter’, where model states and observed fields are 
melded together in suboptimal or optimal ways, sequentially at each timestep that has 
new data. One can also formulate the ‘representer method’ (Bennett, 2002) in a weak 
constraints formalism in which the artificial forcing field is determined for the entire 
state at each time step. More sophisticated techniques for predicting the error fields of 
the model, even non-linearly, have also been developed, such as the error-subspace 
estimation (ESSE) technique of Lermusiaux and Robinson (1999). 

Among the strong constraints techniques are ‘4D variational assimilation’ (4DVAR) 
in which a cost function (generalized data mismatch) is minimized based on assessing 
its curvature and directing the correction to the state vector downgradient until 
convergence is reached.  This can be accomplished with the adjoint of the forward ocean 
model, which evaluates the gradient for the entire state vector, or with Green’s 
functions, which evaluates the gradient for only a portion of the state vector variance, or 
with the Kalman smoother.  The representer technique can also be formulated in a 
strong constraints framework. 

4.2.1 Case 1: CalCOFI and the Southern California Bight 
The Southern California Bight (SCB) encompasses part of the southern California 

Current System (CCS) and is an especially data-rich region because the California 
Cooperative Oceanic Fisheries Investigations (CalCOFI) Program has been collecting 
physical-biological data there for over 50 years (e.g. Chelton et al. 1982; Roemmich 
1992; Hickey 1993; Roemmich and McGowan 1995; Hickey 1998; McGowan et al., 
2003).  The non-synoptic time and space resolution (roughly 1 month and 70 km, 
respectively, for a typical cruise track) of this in situ sampling, however, is inadequate to 
properly resolve the vigorous mesoscale circulation features in the region.  And it is 
precisely these features that control the dominant biological and physical changes via 
localized upwelling cells, meandering fronts and filaments, and thermocline eddies 
(Strub and James, 2000; Swenson and Niiler, 1996). 

Remotely sensed sea level height, SST, and ocean color provide a more detailed 
view of the region, but are limited in that they sample only surface features, have limited 
resolution, and do not extend right up to the coast. Combining the in situ and satellite 
data with data assimilation techniques in ocean models of this region is a perfect 
marriage of data and technique. 

The CalCOFI field and satellite data has been used in strong constraints data 
assimilation strategies (a Green’s function inverse method) to examine the short-term 
evolution of mesoscale features, e.g., within the time span of a single CalCOFI cruise 
(Miller et al., 2000; Di Lorenzo et al., 2004). With the advent of many new techniques 
for obtaining quasi-synoptic, high space and time resolution observations (e.g., CODAR 
estimates of surface currents, drifter platforms for salinity, atmospheric pressure and 
biological measurements, subsurface glider measurements of the upper ocean, etc.), it is 
of great importance now to develop procedures that can make use of this combined suite 
of observations to synthesize a complete picture of coupled physical-biological activity. 
An adjoint model 4DVAR approach with ROMS (Moore et al., 2004) is now being 
tested with CalCOFI and satellite data sets in the SCB. While adjoint data assimilation 
techniques have been widely used in 1D biogeochemical model applications, they have 
yet to be applied to 4D coupled models. This is primarily due to the large computational 
costs associated with carrying out numerous model runs. 
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Several practical issues of assimilating satellite data into the flow fields of the SCB 
were addressed in an identical twin experiment in which a model run was used to create 
synthetic data that are sampled and treated like observations (Figure 5c). The relative 
importance of using hydrographic data and TOPEX altimetry was assessed in these fits 
using a Green’s function inverse method (Miller and Cornuelle, 1999).  The ocean 
model was first run from an initial condition derived from an objective analysis of the 
synthetic hydrographic data. This forward run was then sampled at the data points to 
determine an initial model-data mismatch with the synthetic hydrographic data. The 
linear inverse method was then used to correct the initial conditions and the model was 
re-run from this new starting point (Figure 5a,b). Table 6 shows the linearly predicted 
error variance reduction and the actual variance reduction when running the fully non-
linear model.  

The correction using only hydrography as a constraint on the flow reduced the 
hydrographic error variance (model-data mismatch) by roughly 60%. The correction 
using both hydrography and TOPEX altimetry improved the mismatch with sea level 
only in the areas where no hydrographic data was available. It failed to improve the 
mismatch in the region with the synthetic hydrographic data, showing the importance of 
subsurface information on constraining the total flow field.  

Smaller-scale structures that are not sampled by either sampling scheme could not be 
accounted for by the inverse solution.  The inverse solution was only able to reconstruct 
the well-sampled larger-scale features of the eddy field, not the smaller scale eddies.  
These larger scale features were, however, dynamically important because they 
produced realistic large-scale flow fields which have predictive skill at leads of several 
months. 

 
Table 6.  Error variance reduction in identical twin data assimilation experiments 

Expected reduction variance True non-linear variance reduction 
CASE T, S  (Fig 1a) 
   Total                 65% 
   Salinity             58%                  
   Temperature     61% 

 
   Total                  61% 
   Salinity               45%                  
   Temperature       56% 

CASE T, S, SSH (Fig 2a) 
   Total                89% 
   Salinity            50%                  
   Temperature    58% 

 
   Total                   71% 
   Salinity               35%                  
   Temperature       50% 

4.2.2 Case 2: New Jersey Long-term Ecosystem Observatory (LEO) 
Using circulation models to carry out ocean forecasts has been the goal of the U.S. 

Navy’s Operational Forecast effort for some time. A recent review of the state of this 
effort is presented in a special issue of Oceanography magazine (Oceanography, Vol. 
15(1), 2002). Research into developing methodologies for incorporation of real time 
data sets into these models is ongoing. As the Integrated Ocean Observing System 
(Ocean.US, 2002) continues to develop and in situ data sets become more readily 
available—especially in real-time, the need for and utility of coastal ocean forecasting 
capabilities will increase. 

A coastal forecasting effort that uses satellite data and in situ coastal ocean 
observations from the Long-term Ecosystem Observatory (LEO) on the New Jersey 



J. R. Moisan, A. Miller, E. Di Lorenzo and J. Wilkin 
21 

(a) (b) (c) 

Rec. using + T,S,SSH True Rec. using + T,S 

coast has recently demonstrated the capability of a regional coastal ocean model to 
assimilate data and generate model forecasts in support of real-time adaptive sampling 
strategies (Wilkin et al., 2004). In this effort, the Regional Ocean Modeling System 
(ROMS) model, a 3D ocean circulation model, was used in conjunction with the U.S. 
Navy’s Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) to 
provide high resolution model solutions of the circulation field, and ocean temperature 
and salinity. The ocean circulation model region included the New York Bight and New 
Jersey shelf with an average horizontal grid resolution of 1 km and a higher resolved 
(300 m) grid region of 30 km by 30 km in the vicinity of the LEO observational area. 
Details on the configuration, forcing, and boundary conditions are presented by Wilkin 
et al. (2004). 

 

Figure 5. Sea level maps from an identical twin data assimilation experiment 
corresponding to a CalCOFI cruise. Three-week CalCOFI cruise sampling of 
hydrography is marked by dots.  10-day repeat cycle of TOPEX altimetry sampling is 
marked by solid lines. (a) Average sea level over the there week period for the model 
run from initial conditions corrected by the inverse technique assimilating only 
hydrography data.  (b) As in (a) but but assimilating both hydrography and altimetric sea 
level. (c) The “true” sea level pattern from the base run. Note the small-scale structures 
in (c) that are unable to be measured by CalCOFI or TOPEX. 

 
The model was used with real time data from the annual Coastal Predictive Skill 

Experiments that occurred between 1998 and 2001. The Coastal Predictive Skill 
Experiments were a series of modeling and field experiments that incorporated the 
model forecasts into the decision making processes for scheduling/developing the ship-
based field survey for subsequent field campaigns. In addition to the shipboard data sets 
that provided temperature, salinity and density profiles from CTD deployments, high 
resolution and long-range radar (CODAR) systems provided surface current estimates, 
and satellites provided surface maps of temperature that were available for assimilation 
into the model. Additional observations of temperature from thermistors placed onto 
moorings, and horizontal current profiles from several bottom-mounted Acoustic 
Doppler Current Profilers (ADCPs) were used as independent observations to validate 
the model predictions. 

Two data assimilation techniques, nudging and simple sub-optimal intermittent 
melding, were tested for generation of the 3-day forecasts that were made available to 
the oceanographic field survey team. Data nudging methods simply push the model 
solution towards the observations over some given time scale (e.g. equation 13.5). Data 
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melding methods use weighted sums of the objectively mapped observations and 
forecasts to re-initialize the model at given periods in time. More recent data 
assimilation developments to ROMS now allow for use of adjoint and tangent linear 
data assimilation methods (Moore et al., 2004).  

Because CODAR data sets only provide information on surface current, assimilation 
of these observations can introduce significant vertical shear into the horizontal velocity 
fields, and can severely hamper forecast skill. In order to reduce this impact, Wilkin et 
al. (2004) used a modified projection scheme based on the correlations between the 
CODAR surface data and the ADCP current profiles. This vertical extrapolation method 
provides a statistically based approach to extend the CODAR data sets throughout the 
water column and reduce the introduction of unwanted vertical sheer. While Wilkin et 
al. (2004) also assimilated satellite derived SST, the effect of assimilating surface scalar 
values such as SST may not be as critical as it is for assimilation of momentum data. In 
fact, SST observations have long been used in the modeling community for alternative 
air-sea boundary conditions when heat flux estimates are not available. 

The use of real time observations to support ocean forecast efforts is a recent 
development for oceanographic research and field support applications. Of the two data 
assimilation methods tested by Wilkin et al. (2004) the assimilation by data melding 
provided model solutions with greater forecast skill. The introduction of increasingly 
sophisticated 3D data assimilation techniques (Moore et al., 2004), improved methods to 
adequately assimilate surface ocean observations, and increases in coastal ocean 
observations will support improvement of data assimilation applications in coastal 
regions, e.g. increased forecast skill and duration times.  

5.0 Future Directions 
As computational capabilities grow so too will the ability to carry out more effective 

modeling and data assimilation studies. However, a number of critical areas need to be 
further developed for coastal ocean modeling and data assimilation efforts to evolve to a 
level that can support operational and forecast applications.  

Because of the complexity of coastal regions, modeling studies are crucial tools for 
the synthesis of available knowledge (read: data), for developing and testing new 
theories and challenging old paradigms, and for providing decision making tools to 
coastal managers. A coastal ocean observation program is currently being developed 
(Ocean.US, 2002) that call for the parallel development of coastal modeling efforts. The 
use of Observation System Simulation Experiments (OSSEs) needs to be encouraged for 
support of any observation development program effort.  For instance, 3D coastal 
models have already been used to demonstrate the unlikelihood—due to prohibitively 
high costs—of using ocean moorings to estimate cross-shelf fluxes of carbon from 
coastal regions (Figure  6). 

There is no doubt that for biogeochemical modeling and data assimilation efforts, 
data limitation will remain a reality.  Even with successful implementation of an ocean 
observing system, the ocean will remain under-sampled. Because of this, care must be 
taken in development of any observational system so that it is used to provide the most 
benefit within the limited available funds. Modeling studies can provide insight in how 
such an observation system might be developed. There has been some discussion about 
the use of Observational Systems Simulation Experiments (OSSEs) and their role in 
validating data assimilation techniques under specific present or proposed observing 
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systems. An additional role of these OSSEs should be to link them with data 
assimilation “twin experiments” to design an optimal observation system that uses a 
cost-function based upon both the error estimates and the actual costs (in dollars) for the 
specific observing system. The goal with such an exercise would be to minimize both 
error from the modeling effort and financial costs of the observation effort.    

 
Figure 6. A composite plot of a suite of cross-shelf carbon flux estimates made by 
randomly choosing an increasing number of grid points “simulated moorings” from a 
3D coupled circulation/biogeochemical model (Stolzenbach et al., 2004) to 
calculate/estimate the flux. As the number of  “moorings” increases, the estimate 
approaches the model solution (thick gray bar with arrow). Of interest to observational 
oceanographers is the large range and sign changes observed at low (~5)—yet typical—
numbers of  “moorings.” 

 
Assimilation of ocean color satellite observations into coastal ocean biogeochemical 

models is still in its infancy. This is partly due to the lack of adequately developed 
coastal ocean color products. Coastal regions contain a diverse suite of biogeochemical 
processes, and the bio-optical signature of the allochthonous materials (typically CDOM 
and sediments) varies in space and time. Because of this, regional algorithms should be 
developed that use the available higher-resolution (LAC) data sets and Case-II ocean 
color algorithms that have been optimized or developed for specific coastal regions. 
Doing so would provide an improved ocean color data set that modeling studies could 
then use for validation. 

All of the model/algorithm applications presented within this chapter have been 
developed primarily using subjectively defined or chosen algorithms or equations. There 
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are a number of new applied math techniques that will allow for objective development 
of model equations or algorithms. Several of these (e.g. neural networks, genetic 
algorithms, fuzzy logic) have been presented in Chapter 9.  As these non-subjective 
techniques become available, new ocean color algorithms and model equations will be 
developed that are based relationships that have been optimization using data sets. These 
new techniques will allow for the optimization of both parameters and model equations, 
thereby removing the subjectivity that now exists in developing model equations. 

While open source code development has become popularly supported within the 
computer software community, it continues to be less accepted within the science 
community. There is no doubt that open source code development provides an 
optimized path for creating software applications (e.g. models). It is of benefit to both 
the science funding agencies and associated scientists to adopt this manner of 
code/model development. What will be interesting to observe is the path that is taken to 
develop and support such an effort.  
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