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ABSTRACT

Forced, nonresonant barotropic response at low frequencies (w < /') and large scales (L ~ f/8) can be written
in terms of a streamfunction, which is similar to the quasigeostrophically derived streamfunction. However,
the “nearly equilibrium” forced vorticity equation is valid on the planetary length scale and is influenced not
only by the vortex stretching induced by the driving mechanism (tides, atmospheric pressure, or Ekman-pumping
displacement) but also by 8 coupling to the divergent velocity field of the nearly equilibrium response. A similar
result follows for topographic coupling, albeit on the topographic length scale.

1. Introduction

Under the assumptions of shallow-water theory
(Miles 1974), linear barotropic, forced oceanic motion
satisfies

—fo=—gn.+2Z,—ru (1.1a)

o+fu=—gn+2Z,—rv (1.1b)

n + (uH), + (vH), = 0, (l.1¢c)
where we include constant linear damping, propor-
tional to r, and low-frequency forcing (Gill 1982, pp.
336-340)

__Pa, [* ,

z=gi- 24 [wpuat (12)

due to long-period tides, atmospheric pressure distur-

bances, and Ekman-pumping displacement,’ respec-
tively. The remaining notation is conventional.

In the following section, we demonstrate that, under
the assumption that the ocean response is nonresonant
(or, equivalently stated, nearly equilibrium, nearly in-
verted barometer, or nearly isostatic), the rotational
response to low-frequency (w/f < 1), large-scale (L
~ f/B) forcing can be understood in terms of a vor-
ticity equation which is driven not only by the vortex
stretching induced by the forcing mechanism, but also

by 8 coupling to the divergent velocity field of the
“nearly equilibrium” response.

! Thus, Wexman corresponds to the specified vertical velocity at the
base of a thin, frictional surface layer.
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For simplicity, this derivation retains Cartesian ge-
ometry, although the analogous derivation for spherical
geometry is straightforward. Owing to the original mo-
tivation for this research, which was to clarify the nature
of oceanic long-period tidal response (Miller 1986,
chapter 3), we designate the forcing mechanism as
“tidal” in the following two sections,

2. Asymptotic expansion

For the case of a flat bottom, we manipulate (1.1)
into the standard continuity, vorticity, and divergence
equations, written respectively, as

dm = HV?¢, (2.12)

(V29, + oy + rV2)y = V- (fV9), (2.1b)
(V0, + B0, + rV%)¢ = =V - (fVY) + gV — gV,

(2.1¢c)

where Y represents the velocity streamfunction, ¢ the
velocity potential, n the deflection of the free surface
from rest, 5 the “self-consistent”? equilibrium tidal
forcing (Agnew and Farrell 1978), and 8(y) = df/dy.
The condition of no velocity transport normal to the
ocean-basin boundary is satisfied by the convenient
(but ad hoc) assumptions that V¢ n = 0, where n
= (ny, nz) is unit normal to the boundary, and ¢ = 0
along the boundary. Introduce into (2.1) the scalings,

(n,n)~ F(n,0), v~S¢, ¢~ Py,

2 Self-consistent forcing implies that if the response is equilibrium
(or inverted barometer), so that the free surface coincides with Z/g
and no dynamic currents arise, the effects of mass conservation, ocean
self-attraction, and the deformation of the solid earth are held in
account, For the purpose of this note, self-consistent may be taken
simply to imply f, . .i, Zdxdy = 0.

°
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together with

(x, ) ~L(x,y), t~w’'t, f~Q B~Q/L,
where

L~ (2X10%27r)km, w~ (2x/14)d"},

Q~4rd’, H ~ 4000 m

are appropriate for the large-scale, low-frequency forc-
ing of the fortnightly tide. Scaling » with 5 implies we
are considering only nonresonant conditions in the
sense that the total response deviates only weakly from
the equilibrium response. We now determine the rel-
ative sizes of n, ¢, and ¢.

r <k w,

The choice
P wL*F
H
results in the nondimensional continuity equation,
dn = V. (2.2)

Since the 8 term can be taken to dominate the left-
hand side of (2.1b), we find that the scaling
S~P
results in the nondimensional vorticity equation,
'Yy = Ag¢, (2.3)
where

I'=0V20,+ 8, + pV%, A=V-(fV),

d=w/Q, p=r/

Implementing the scalings for ¢ and ¢ in (2.1c¢) yields
the nondimensional divergence equation,

L' = —eAy + V2q — V25,

Q2 L%\ [w
)R-

is a small parameter. (Note that ¢ = y§, where vy is a
modified Lamb parameter, the square of the ratio of
length scale to external Rossby radius, and 6 is a fa-
miliar small parameter from quasigeostrophic scaling.)

We assume each dependent variable may be ex-
panded asymptotically in powers of ¢,

£=£0 4+ &M+ 0(e?).
At zero order, the divergence equation yields 5 (®

= 3. Incorporating this result in the zero-order conti-
nuity equation then yields the Poisson equation

7= V¢, (2.5)

with V¢ (@ .n = 0 on the domain boundary. The so-
lution of (2.5) for ¢ () allows us to solve the zero-order
vorticity equation,

(2.4)
where

Iy @ = A¢©, (2.6)
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with ¥ = 0 on the boundary. Together, the zero-
order solutions for y and ¢ drive the first-order diver-

gence equation,
V2D = D@ 4 AY©, (2.7)

in which 5!, the deviation of the free surface from
equilibrium, obeys the boundary condition

AV .en=0, (2.8)
where
A= (fdy+ 0%, fox ~ 0%). (2.9)

Equations (2.5), (2.6), and (2.7) thus form a hierarchy
of equations for approximating the solution of the dy-
namic tide, 7 (V(x, y).

3. Discussion

In dimensional form, the hierarchy of equations for
approximating the solution for large-scale, low-fre-
quency nonresonant forced motion is, for the case of
periodic forcing proportional to e,

0=z (3.1a)

iw
V2@ = X0

1
(3.1b)

(iwV? + Bo, + rV)Y @ = V- (fV4 @) (3.1¢c)
gV = V- (fVP©O) + iwvie©®
+ B + 1V . (3.1d)

At lowest order, the response is equilibrium (an in-
verted barometer, in the sense of atmospheric-pressure
driving), so that the free surface coincides with the
displacement due to the forcing. This nearly equilib-
rium response then requires, by mass conservation, a
divergent velocity field to balance the free-surface dis-
placement. The divergent velocity field drives the vor-
ticity equation via two processes, which we may inter-
pret physically. We rewrite (3.1c), with arbitrary time
dependence, as

V3O + By + WO = %ﬁ, + B, (3.2)

The left-hand side evidently corresponds to “rigid-lid”
linear quasigeostrophic dynamics (although we have
not invoked the quasigeostrophic approximation). The
first forcing term on the right of (3.2) is simply the
vortex stretching induced by the equilibrium tide (e.g.,
Wunsch 1967). The additional term on the right rep-
resents S-induced coupling of the divergent velocity
field of the time-dependent equilibrium tide. This ad-
ditional term scales out of the equation if the S-plane
approximation, f = fo + 8y for fo > (L, is invoked.
Note also that, as in unforced quasigeostrophic flow,
the dynamic divergent velocity field is negligible; the
forced divergent velocity field, however, is manifestly
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significant on the planetary scale. O’Connor and Starr
(1983) obtain an equation similar to (3.2) from a par-
ticular solution for a global pole tide (the oceanic re-
sponse to the 14-month period Chandler wobble of the
earth), but the result was not generalized.

Once the zero-order fields of streamfunction and ve-
locity potential are found from (3.1c), the deviation
of the free surface from equilibrium can be obtained
from the divergence equation (3.1d). The contribution
of ¢ @ to n‘") represents a stretched geostrophic bal-
ance, the well-known linear balance relation from me-
teorology (Holten 1979). The contribution of ¢® to
7V represents a very weak dynamic divergent velocity
signal.

Two questions deserve addressing. Is the result (3.2)
simply a consequence of violating the B-plane as-
sumption of quasigeostrophic theory? It is true that the
extra forcing term in (3.2) scales out of the equation
under the #-plane approximation, but violations of the
B-plane approximation are often interpreted as geo-
metric deformations (via slowly varying coefficients)
of the significant terms of the quasigeostrophic equa-
tions (e.g., Pedlosky 1984). In the case of (3.2), how-
ever, forced nonresonant planetary-scale flow can be
seen to be influenced by an additional term with sig-
nificant amplitude. For example, if we consider a basin
with side lengths, L, centered on the equator (y = 0)
and choose 7 = A cos(2ry/L), which allows ¢ ¥ to
readily satisfy the boundary condition and models the
fortnightly equilibrium tidal structure, and let f( ) = Q
sin(wy/ L), then the ratio of the vortex stretching term
to the B-coupling term in (3.2) is cos2(wy/L)/cos(2xy/
L), the magnitude of which exceeds unity over much
of the basin. Is the assumption of nonresonant, nearly
equilibrium flow valid? The fortnightly and monthly
tides have been observed to be close to equilibrium
(e.g., Wunsch 1967) and time-dependent Sverdrup
flow (no Rossby wave excitation ) is often suggested to
be the dominant low-frequency, wind-driven response
of quasigeostrophic models (Willebrand et al. 1980)
and of observed flows (Niiler and Koblinsky 1985).
Thus, moderate damping at low frequencies appears
to effectively extinguish Rossby resonances.

4. Concluding remarks

In summary, if the nonresonant oceanic response to
large-scale, low-frequency forcing is expanded about
the equilibrium response, (rather than the geostrophic
balance as in free-wave expansions) the deviation of
the response from equilibrium arises primarily from
the vorticity equation. Both vortex stretching and the
divergent velocity field of the nearly equilibrium re-
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sponse serve as driving mechanisms for the vorticity
equation. Thus, forcing a nonresonant quasigeo-
strophic model over large meridional spatial scales with,
say, fluctuating wind-stress curl alone would be incon-
sistent, since only vortex stretching would influence
the vorticity equation and a significant portion of the
forcing would thereby be excluded.

For a flat-bottomed ocean, the structure of the $-
coupling forcing term in the vorticity equation (3.2)
has similar spatial scales as the vortex stretching forcing
term. For a rough-bottomed ocean, however, the anal-
ogous derivation suggests that the forcing function for
the vorticity equation may be strongly altered.in struc-
ture. The significant alteration in forcing function arises .
from obtaining ¢ ‘*’ from the topographic analogue of
(3.1b), namely,

V(HV$©) = iwn©, (4.1)

which may then impose topographic length scales in
the B-coupling forcing term of the nearly equilibrium
forced vorticity equation. Further work on this topic
is in progress.
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