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Abstract

A primitive equation ocean model is fit with strong constraints to non-synoptic hydrographic
surveys in an unstable frontal current region, the Iceland–Faeroe Front. The model is first

Ž .initialized from a time-independent objective analysis of non-synoptic data spanning 2 to 6 days .
A truncated set of eddy-scale basis functions is used to represent the initial error in temperature,
salinity, and velocity. A series of model integrations, each perturbed with one basis function for
one dependent variable in one layer, is used to determine the sensitivity to the objective-analysis
initial state of the match to the non-synoptic hydrographic data. A new initial condition is then
determined from a generalized inverse of the sensitivity matrix and the process is repeated to
account for non-linearity. The method is first tested in ‘identical twin’ experiments to demonstrate
the adequacy of the basis functions in representing initial condition error and the convergence of
the method to the true solution. The approach is then applied to observations gathered in August
1993 in the Iceland–Faeroe Front. Model fits are successful in improving the match to the true

Ždata, leading to dynamically consistent evolution scenarios. However, the forecast skill here
.defined as the variance of the model–data differences of the model runs from the optimized

initial condition is not superior to less sophisticated methods of initialization, probably due to
inadequate initialization data. The limited verification data in the presence of strong frontal slopes
may not be sufficient to establish forecast skill, so that it must be judged subjectively or evaluated
by other quantitative measures. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ocean mesoscale eddy forecasting is typically limited by a number of factors,
including inadequate initialization information, unknown boundary conditions, inaccu-
rate model physics, and atmospheric forcing functions that must also be predicted.
Moreover, establishing skill levels in mesoscale forecasting is also limited by inadequate
validation data and the ambiguity of defining skill. It is of interest to explore the
consequences of these issues to aid the development of mesoscale ocean forecasting

Ž .techniques such as have been developed by the Harvard team e.g., Robinson, 1996 .
Ž .The region around the Iceland–Faeroe Front IFF, hereinafter is vigorously unstable

with rapidly evolving small-scale eddies and frontal meanders that have time scales as
Žshort as 2 days and length scales as small 10 km e.g., Hopkins, 1991; Niiler et al.,

1992; Perkins, 1992; Allen et al., 1994; Tokmakian, 1994; Miller et al., 1995a,b; Poulain
.et al., 1996 . A unique dataset for mesoscale forecasting experiments was collected in

the IFF during August 1993. The data contains a relatively finely resolved initial
Ž .hydrographic survey, an updating survey, and a final verification survey Fig. 1 . This

data was used to make real-time forecasts at sea and the results have been evaluated
Ž .quantitatively for forecast skill pattern correlation and rms error for both a primitive

Ž . Žequation model Robinson et al., 1996a and a quasigeostrophic model Miller et al.,
.1995b .

Although the skill scores for those sets of forecasts were encouraging, there are many
issues that can be explored with a dataset designed specifically for forecasting and
validation. For example, the Initialization Survey was collected over a 3-day time
interval which poses a problem with choosing synoptic initial conditions. Robinson et al.
Ž .1996a used a feature model strategy combined with optimal interpolation to launch
forecasts from the end of the 3-day survey. Can a more objective initialization strategy
that allows for this non-synopticity improve the skill of forecasts of independent data?

In this paper, we examine the issues of initialization and verification of IFF ocean
forecasts by applying an inverse method for initialization in two sets of experiments.

Ž .The inverse method is similar to Bennett’s representor method Bennett, 1992 and
Ž .Wunsch’s Green’s function approach Wunsch, 1996 and enforces the dynamics as a

strong constraint. We adjust only the most energetic scales of the model initial
conditions to minimize the model–data misfit variance in the fitting time interval. This
truncation is related to the ensemble Kalman filter discussed by van Leeuwen and

Ž . Ž . Ž .Evensen 1996 and by Lermusiaux 1997 and Lermusiaux et al. 1998 for the same
Harvard primitive equation model used here. We first test the inverse method by
generating synthetic data, sampled in the same way the observations were collected, in
‘identical twin’ predictability experiments. We then test our techniques on the observa-
tions to determine if the fits are successful and if forecast skill is enhanced over the

Ž .results of Robinson et al. 1996a .
We find that we are able to fit the model to the non-synoptic hydrographic data even

for week-long time intervals. This result suggests that the model physics is acceptably
consistent with the flow evolution during the August 1993 IFF surveys. However,
increasing the skill of the fits does not always yield increased forecast skill, at least
when gauging skill by rms error variance. This is due to the initialization data being too
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Ž .Fig. 1. Maps of the locations of the three hydrographic surveys collected in the Iceland–Faeroe Front region during August 1993. a Initialization Survey
Ž . Ž . Ž . Ž . Ž .approximately 3 days duration , b Zig-Zag Survey approximately 2 days duration and c Validation Survey approximately 3 days duration . The type of data is
indicated by the symbol: dot for CTD, cross for XBT and star for XCTD. The path followed by the ship is indicated below each plot.



( )A.J. Miller, B.D. CornuellerDynamics of Atmospheres and Oceans 29 1999 305–333308

limited to bring the model close enough to the true initial condition in a region which is
very sensitive to initial condition error. Moreover, the limited verifying data does not
always give an unambiguous demonstration of quantitative forecast skill. Qualitative
measures of assessing fitting and forecasting skill must then be invoked to judge the
results.

Ž . Ž .We first introduce the data Section 2 , the model Section 3 , and the fitting
Ž . Ž .technique Section 4 , then test the method in an identical twin experiment Section 5 .

Ž .We then apply the approach to the August 1993 IFF dataset Section 6 and then
Ž .summarize and discuss the results Section 7 .

2. Initialization and validation data

In August 1993, hydrographic surveys were collected in the region around the IFF in
a joint project between the SACLANT Undersea Research Center and Harvard Univer-
sity aboard the NATO vessel RrV Alliance. These surveys were specifically designed
for mesoscale eddy forecasting experiments in that they included an Initialization

Ž . Ž .Survey, an updating Zig-Zag Survey, and a Validation Survey Fig. 1 , hereinafter
denoted with capital letters for clarity. The hydrographic data consist of expendable

Ž . Ž .bathythermograph XBT , conductivity–temperature–depth CTD , and expendable CTD
Ž .XCTD data as indicated by the symbols in Fig. 1. The Initialization Survey data
spanned August 14–16 and included XBTS, CTDs, and XCTDs sampled at 24 km zonal
resolution and 7 km meridional resolution. The Zig-Zag Survey, from August 18 to 19,
included only XBT data in and around the most actively evolving area of the IFF at that
time. The Validation Survey followed the same track as the Initialization Survey from
August 20–24. Additional data was also collected, including surface drifter displace-
ments in the core of the IFF, one clear satellite image of sea-surface temperature on
August 22, and subsurface velocity measurements from moored currents along 12 W.

Ž . Ž . Ž .Miller et al. 1995b , Miller et al. 1996 , and Robinson et al. 1996a provide additional
details of these data and their acquisition.

To make the first guess for the model initialization and to provide a concise field
picture of the data, the hydrographic data were objectively mapped as if they were
time-independent. All measurements from a particular survey were used together to

Ž .produce smooth, three-dimensional temperature and salinity fields Fig. 2 .
Ž .A smooth background state for the objective analysis OA, hereinafter was con-

structed from the observations and historical data, using the historical data to determine
the background state for the portion of the model domain outside the observations. The
background state was mapped independently at each depth level by fitting the tempera-
ture and salinity fields to two-dimensional quadratic polynomials, which approximated
the frontal region as a transition between relatively homogeneous water masses to the
north and south.

The anomalies with respect to the background state were mapped objectively
Ž .Bretherton et al., 1976 , using a Gaussian horizontal covariance with an e-folding scale
of 20 km. The vertical smoothing was done by least-squares fitting each temperature

Ž .station to three vertical empirical orthogonal functions EOFs, hereinafter derived from
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Ž .Fig. 2. Objective analyses of the vertical-EOF-filtered temperature at three depths 25, 75, 150 m correspond-
Ž . Ž .ing to the top three model surfaces for left Initialization Survey, center Zig-Zag Survey plus Initialization

Ž .Survey, and right Validation Survey. Temperature warmer than 78C is white, warmer than 58C light grey,
warmer than 38C dark grey and cooler than 18C black. Contour interval is 18C. These fields are used for the
first guess at the model initial conditions and for subjectively evaluating the flow fields. Model–data misfit is
always computed using raw unfiltered data.

the entire temperature dataset, and then the EOF amplitudes were mapped horizontally.
Salinity was supplied for XBT stations using T–S correlations derived for the EOF
amplitudes. The three temperature EOFs explained 96% of the observed temperature
variance, using uniform weighting in the vertical. Put another way, the stations
reconstructed from three temperature EOFs differed from the original stations by about
0.58 rms at the surface, decreasing linearly to about 0.38 rms at 360 m. The T–S
conversion was checked on the 53 CTD casts, and calculated salinities differed from
observed salinities with a mean of less than 0.005, and rms of 0.07 psu above 60 m and
0.04 psu from 60–360 m. Below 360 m, there was very little salinity variation in the
observations.

Fig. 2 shows the results of the temperature OAs for the three surveys plotted to show
the general nature of the evolving frontal structures. Initially, the front has a kink in its
east–west path, with an apparent eddy lying to the north of the front. Two days later, the
front exhibits a southeastward flow in the western part of the domain. Roughly 4 days
later, a hammerhead instability develops in the front, clearly seen in a satellite image of

Ž .SST Miller et al., 1995b; Robinson et al., 1996a . These general and qualitative features
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of the frontal evolution will prove useful in verifying the fits and forecasts of the model,
since quantitative skill scores may be misleading as discussed below. N.b., only the raw

Ž .data with uncertainty bounds are used to quantitatively validate the model; the OAs are
used for initialization and qualitative discussions only.

3. Primitive equation forecast model

Ž .The Harvard Ocean Prediction System HOPS has been discussed in the context of
Ž .many uses around the world e.g., Robinson, 1996; Robinson et al., 1996b, 1998 Here

Ž .we summarize only the rudiments of the primitive equation PE, hereinafter model
version 7.28 used for this study. The Geophysical Fluid Dynamics Laboratory PE model
Ž .Bryan and Cox, 1967; Semtner, 1974 provides the basic integration algorithm for the
rigid-lid, open-boundary PE model of HOPS. The PE open boundary conditions, subgrid
scale physics, and bottom topographic treatment via hybrid coordinates were developed

Ž .at Harvard Spall and Robinson, 1989; Lozano et al., 1994 .
Ž .In this study, we use a grid similar to that employed by Robinson et al. 1996a in

real-time forecasts. The horizontal resolution is 5 km in both directions. The hybrid
coordinates are used in such a way that the top three levels are flat while the bottom two

Žlevels follow the strongly varying topography which is always shallower than the flat
.levels . The five surfaces of vertical resolution consist of the top three level surfaces at

25, 75, and 150 m depth and the bottom two sigma coordinate surfaces spaced equally
Ž .between 200 m and the topographic ridge in the area Fig. 3 . The topography was

Ž .clipped to 300 m depth including rendering Iceland as a shallow sea then smoothed

Fig. 3. Topography of the region around Iceland and the Faeroe Islands used by the model. The ETOPO5
Ž .topography including Iceland itself was first clipped to 300 m minimum depth, then smoothed several times

with a grid scale filter. Depths shallower than 400 m are white, less than 800 m light grey, less than 1200 m
dark grey, and deeper than 1200 m black. Contour intervals are irregularly spaced to guide the eye. The data
domain is indicated by the black rectangle while the model boundaries encompass the entire plot.
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several times at grid scale to arrive at the final ‘conditioned’ topography. The horizontal
Ž .boundaries of the model domain extend far compared to Robinson et al., 1996a from

the data area in order to attempt to avoid the problem of specifying persistent or
predicted boundary conditions. However, there is a trade-off on including the necessary
extra grid points for distant boundaries vs. making the perturbation runs more computer
time-efficient. The far-field boundary conditions are no-flux on temperature and salinity,

Ž .Spall and Robinson 1989 radiation conditions on velocity and vorticity, and Orlanski
Ž .1976 radiation conditions on barotropic streamfunction. Although open boundary

Ž .conditions in PE models are generally ill-posed Bennett, 1992 , they apparently have
little influence on the flow in the data region during the rather short 3–10 day
integrations considered here. Horizontal friction is modeled with a fourth-order Shapiro
filter applied eight times each time step. Vertical diffusion has a constant coefficient of 5
cm2rs.

A fundamental assumption in these experiments is that intrinsic variability of the IFF
current and eddy field is the dominant mechanism generating variability. The effects of

Žsurface wind, heat flux, and fresh-water flux forcing are ignored no-flux surface
.boundary conditions . The model eddy field evolves in a manner that is dynamically

Žconsistent i.e., follows the equations of motion with no unphysical forcing during the
.run after the specification of the initial conditions and the boundary conditions. Except

for some initial tuning of parameters to give reasonably energetic and smooth flow
conditions, we did not explore the sensitivity of these results to changes in model
parameters, topographic smoothness or surface forcing. Each of these effects could be
important and should be explored in future studies.

Ž .Model runs are initialized from OA Section 2 of temperature and salinity computed
on constant depth levels and mapped to the model surfaces. Baroclinic velocities are
computed geostrophically from the temperature and salinity profiles with a level of no
motion at 350 m depth. We tested the efficacy of holding the temperature and salinity
fixed while integrating the model for several days to allow the velocity fields to come

Ž .near to a dynamical equilibrium cf. Bogden et al., 1993 . However, this resulted in
energetic initial conditions that rapidly produced evolving temperature and salinity fields
that differed greatly from the observations in the model fitting time interval and
increased the non-linearity of the attempts to fit the data. We thus chose to use the level
of no motion velocity initialization with the inverse solutions giving the corrections to
this guess of the initial state.

4. Inverse initialization strategy

ŽMany techniques exist for combining data with models e.g., see the reviews by Ghil
.and Malanotte-Rizzoli, 1991; Bennett, 1992; and Robinson et al., 1998 . Least-squares

methods are widely used for fitting both steady and unsteady models to data, and can be
implemented sequentially as the Kalman filter followed by a smoother, or globally by

Žsolving the Euler–Lagrange equations to find the minimum of an objective function Le
Dimet and Talagrand, 1986; Scheinbaum and Anderson, 1990; Bennett, 1992; Bogden et

.al., 1996 . The objective function is a sum of quadratic terms penalizing misfit between
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the observations and the data generated by the model, and also penalizing corrections to
the assumed model parameters, which may include forcing, initial, and boundary
conditions. The weighting of the penalty terms often includes smoothness criteria. The
error in the model equations can be thought of as time-dependent, non-physical forcing
at every grid point.

In our case, the model initial state was the only adjustable field, and was adjusted to
minimize J, the weighted sum of squared data misfits plus the weighted sum of
initialization adjustments

TT y1 y1JsC P Cq OyF CqC R OyF CqC 1Ž . Ž . Ž .C 0 0

where C is the adjustment to the initial model state vector, C ; Py1 is the inverse of0 C

Ž.the covariance of the uncertainty in C ; O is the vector of observations; F is the0

vector of model variables, sampled at times and locations corresponding to O; Ry1 is
Ž.Tthe inverse of expected covariance for the residuals; and denotes matrix transpose.

By ‘data misfits’ we mean the differences between the observations and the model
Ž .estimate at every data point, dsOyF CqC . The weighting of these misfits in the0

objective function is set by Ry1, which is assumed to be diagonal. The residuals are the
components of the misfits which cannot be fit by adjusting the model initialization. They
may be due to measurement errors, unmodeled structure, or incorrect model physics.
The square root of the diagonal of matrix R is the vector of expected rms residual at the
data points. Since we refer to this frequently, we will use the shorthand expression s,

² 2:1r2 Ž .where the elements are s s r the square roots of the diagonal elements of R ,k k

indexed by datum.
The adjustments, C , to the initial model state, C , are weighted by the inverse of the0

covariance of uncertainty in the initial conditions, P , which is not diagonal becauseC

large-scale errors are expected to be more energetic than small-scale errors, although
Žerrors are assumed to be uncorrelated between layers and between variables T and S

.uncorrelated, for example . This covariance function was generated for each layer from
fields of rms initial condition uncertainty and horizontal decorrelation scale at each
level. The rms uncertainty was derived from the temperature gradient magnitude for
each level in the objectively mapped initialization, smoothing with a Gaussian filter with
a 30-km e-folding scale, in order to spread the variance over the general frontal region.
The resulting assumed rms uncertainty varied by a factor of 10 between the frontal
region and the far-field. This has the effect of concentrating corrections in the frontal
region, where the initialization uncertainty is highest. The decorrelation scales were set
inversely proportional to the uncertainty, so that points near the front had a decorrelation
scale of about 20 km, increasing to 80 km for points far from the front. This allows for
small-scale corrections near the front and larger-scale corrections away from it. The
model initialization included temperature, salinity, baroclinic current, and barotropic
streamfunction, and the same covariance function was assumed for all variables at each
level, although the variance levels were scaled to match the observed variability. This is
an ad hoc choice for generating the covariance function, but we did not find a strong
sensitivity to choices of smoothing or decorrelation scale.

To reduce the size of the problem, the state vector uncertainty covariance matrix,
P , was factored into eigenvalues and eigenvectors, and only the eigenvectors corre-C
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sponding to the largest 100 eigenvalues for each layer were used as ‘basis functions’ for
the perturbations to model initial conditions. These accounted for 79 to 89% of the
assumed uncertainty variance. This approach is frequently used in ensemble Kalman

Ž .filter methods e.g., van Leeuwen and Evensen, 1996 . The twin experiments provided a
check on the efficacy of these functions for representing error in an initial state; initial
state temperature errors were well-represented although velocity errors were less so.

Ž .Customized basis functions for velocity based on velocity gradients, etc. were not
used. The factorization of P simplified the penalty term for the perturbations to theC

initial conditions to:

C TPy1 CfmTPy1 m 2Ž .C

where m is the vector of amplitudes of the basis functions and P is the diagonal matrix
of eigenvalues for the retained basis functions. Note that this reduces the dimensionality
of the initial condition adjustment but does not change the state vector of the dynamical
model.

ŽTo compute the dependence of data misfit on basis function amplitude ‘model
.sensitivity’ , a series of perturbation experiments was executed. In each experiment, the

model was perturbed by changing the initial conditions using a single basis function.
The model was run from the new initialization throughout the time with data, saving the
differences between the predicted data values from the original and new initializations.
The dependence of data on initial conditions is thus linearized around the current best
guess of the model initialization. Changes in output model predictions for the data
misfits, d, are related to changes, m, in the unknowns and the residuals, r. The
dependence is written in matrix notation as:

dsHmqr, 3Ž .
Ž . ² T:where H is the matrix of derivatives the linearized ‘forward problem’ and rr sR.

Using the linearization and the orthogonal basis functions, the objective function to
be minimized is:

TT y1 y1Jsm P mq dyHm R dyHm . 4Ž . Ž . Ž .
This seeks to minimize the weighted misfits between the observations and the model as
well as the weighted size of the correction to the initial state. The weighting matrices P
and R are now both diagonal, greatly simplifying the computations.

The model parameters which minimize the objective function are determined by
iterating a linearized, time-dependent least-squares inverse. This procedure is a form of
Newton’s method. The least-squares inverse of model sensitivity has been applied to

Ž .many problems, e.g., as discussed by Bennett 1992 .
Ž .Because the model is non-linear, the linearized forward model sensitivity matrix is

incorrect when the guessed initial state is incorrect due to advection by an incorrect
‘background’ flow. These forward problem errors add to the other inadequacies of the
forward model, but their effects can be assuaged by adding extra variance to the residual
covariance R. As the estimate of the initial state is improved, re-linearizing the model
can lead to a better forward model, so the extra ‘non-linearity’ errors can be gradually
decreased when the inverse is repeated. The fixed-point iteration of ‘total inversion’
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Ž .Tarantola, 1987 is not implemented here, so the iteration proceeds relative to the last
estimate, and the matrix R controls the step size. Large R means small steps toward the
final solution, but taking too many steps will likely lead to overfitting and excess
structure in the estimate. The linearized iteration is not guaranteed to converge, and a
very poor starting guess for the model initialization can mean that the linearized forward
model will drive the iteration in the wrong direction. Fortunately, the larger-scale
structures tend to be more linear than the small-scale structures, and the dataset used
here was adequate to allow the iteration to significantly improve the fit to observations
in all cases.

At each step, the linear relation is inverted by choosing a statistically best solution in
the least-squares sense.

y1 y1T T T y1 y1 y1msPH HPH qR ds H R HqP R d. 5Ž . Ž . Ž .ˆ
At the end of each step, the non-linearity of the forward problem is checked by
comparing the data values from a model run using the new initialization estimates to the
linearized approximation used for the inverse at that step. For example, the ‘non-linear-
ity’ for iteration i is the difference of the data from the starting and ending model runs
in step i minus the data changes predicted by the linearization:

NLsF C qC yF C yH m 6Ž . Ž . Ž .ˆiy1 i iy1 i i

where C is the state vector perturbation made from the basis function perturbations m̂i i

and C is the guess at the start of the step, and was used to generate H , theiy1 i

linearized forward problem for the step.
Iteration was found to proceed most reliably if small steps were taken. We enforced

this by increased s so that the largest non-linearities were small compared to the
assumed uncertainty. If the non-linearities were too large, the solution was discarded,
and the inverse was repeated with larger uncertainty bounds. The iteration proceeds until
either a fit is obtained within the expected uncertainty bounds, or the non-linearity and
misfit cannot be reduced. If either the model or the forward problem is strongly

Ž .non-linear with respect to the uncertainty in the initial guess , then it may be necessary
to abandon the iterated linearization and use a global grid search or Monte Carlo
method, in order to avoid local minima in the least-squares fit. This was never attempted
in our cases.

ˆThe inverse procedure also estimates uncertainty P for the output model parameter
values:

y1 y1T T T y1 y1P̂sPyPH HPH qR HPs H R HqP 7Ž . Ž . Ž .
In the open ocean with no natural boundaries nearby, the boundary conditions should be
measured and supplied at each timestep. In our situation, one can either use the
unknown boundary conditions as adjustable parameters in the model, or extend the
model domain so that the boundary conditions have little effect during the limited

Ž .runtime needed to cover the data Yakimew and Robert, 1990 . The latter choice, which
Ž .we adopt here Fig. 3 , transfers the uncertainty from the boundary conditions to the

initial conditions. This is inefficient in some respects, but also provides a simple
representation of features propagating into and out of the data domain.
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To the extent that the model is non-linear, the dynamical evolution is incorrect in
regions where the field is poorly determined, and is incorrect globally until the field is
determined perfectly. For this reason, it is difficult to distinguish between model errors
due to incorrect dynamics and due to poorly determined advecting fields. The error
estimates from the least-squares procedure and the forecast provide linearized guesses
for the error level expected if the dynamics were perfect and the prior statistical

Ž .assumptions were correct linear and Gaussian .

5. Identical twin experiments

As a test of the initialization by fitting, we conducted ‘identical twin’ experiments in
the IFF model domain. In this framework we are able to check several issues. Is our
selected set of basis functions adequate to correct a large fraction of the variance of an
initial condition error field? Does the model fit converge towards the true initial state?
Does a fit yield increased forecast skill?

We commenced a base run, the synthetic ‘observed’ data, from the initial time-inde-
pendent OA of the non-synoptic Initialization Survey of the observed data. The velocity
field was initialized with a 350-m level of no motion. It was then allowed to evolve with
fixed temperature and salinity for three days before the ‘truth’ base run commenced
Žwhere this diagnostic spin-up was done solely for this twin case ‘observed’ run and no

.other . This ‘truth’ run was then sampled along the same cruise tracks as the Initializa-
tion Survey. From this synthetic non-synoptic ‘data’, we constructed a time-independent
OA from which to commence our sensitivity runs. Note that since the model only has
five vertical surfaces where temperature and salinity is defined, we chose to objectively
analyze the T and S fields on the model surfaces themselves. This circumvents problems
in defining vertical basis functions that map the model surfaces to three-dimensional
fields. Additionally, we merged the synthetic OA initial state in the data region with the
‘true’ far-field initial conditions so that the error field of the initial conditions was
confined to the data region. This circumvents the problem of supplying a climatology in
the unknown far-field as must be done in reality.

5.1. Basis function efficiency

Since we know the initial condition error in the identical twin scenario, we evaluated
the efficiency of the basis functions in explaining this error for each of the five model
variables. Table 1 shows the variance explained by the basis function expansion of the
initial condition error due to the time-independent OA of the cruise-track synthetic data.
For scalar variables, 80–95% of the error variance is captured by 50 basis functions and
93–97% is captured by 100 functions. For the velocity components, 58–76% of the
error variance is explained by 50 functions and 72–81% of the error variance is
explained by 100 functions. The poorer performance of the basis for velocity is expected
since the basis functions were derived for temperature. These results suggest that our
choice of basis sets is likely to be an adequate descriptor for representing the true
Ž .unknown initial condition error in the observations.
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Table 1
Percent variance explained by structure functions

Identical twin case initial error fields

Number of functions 50 100

T-1 85 93
T-2 82 93
T-3 85 93
T-4 94 96
T-5 95 97
S-1 86 94
S-2 85 94
S-3 86 94
S-4 95 97
S-5 95 97
U-1 71 81
U-2 64 81
U-3 70 79
U-4 67 72
V-1 67 80
V-2 58 78
V-3 68 81
V-4 76 80
P-1 93 96

T-n indicates temperature at model level n, S-n salinity at level n, U-n, V-n, baroclinic velocity components
for mode n, and P-1 barotropic streamfunction.

5.2. Idealized initial condition error

ŽWe first tested the inverse strategy in several simple scenarios e.g., a single basis
.function added to the ‘true’ initial condition in the temperature field of one layer . In

Ž .this ideal case initial condition error spanned completely by one basis function , the
only thing preventing a perfect inverse solution is non-linearity. We were able to solve
nearly exactly with one iteration for the amplitude of the basis function in perturbation
runs involving one or a few basis functions as long as the perturbation was not so large
Ž .-18C as to induce strong non-linearity in response. In the case of significant
non-linearity, several iterations were needed to converge to the true solutions in these
simple cases.

We secondly constructed an initial condition error field as a 50-basis function
Žtruncation of the ‘true’ initial condition error for each variable in each layer. These

represent typically 80% of the ‘true’ initial condition error variance in most layers and
.for most variables as shown in Table 1. When the model initial conditions are corrected

Ž .by the inverse solution 1900 total unknowns , the model–data misfit variance is
reduced to 87%. Since the linearized inverse predicts a 94% reduction in model–data
misfit, the non-linearities in the forward problem are small. A comparison of the
amplitudes of the basis functions predicted by the inverse vs. the actual amplitudes used
in the construction of the initial difference fields shows that the larger amplitude
coefficients usually agree within a factor of two while the smaller amplitude ones can
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differ appreciably. Therefore, for each day of the model run, we evaluated the
Ž‘model–data field error variance’ defined to be the instantaneous squared error ‘truth’

.run minus adjusted initial condition run averaged over all grid points in the data domain
Ž .128W–9.58W; 63.58N–658N . The temperature and salinity field error variance was
typically reduced by 75% throughout the hindcast and also several days into the time of
independent data. This shows that the inverse is converging towards the true solution
and not just fitting the data. The iteration did not converge completely, however, but
found a local minimum in the objective function due to indeterminacy; a non-linear
search may have been needed to find the exact solution. The velocity field error variance
was only reduced 20–70% in the hindcast and forecast interval suggesting that the
hydrographic data is more efficient at constraining hydrography rather than velocity.

5.3. Full initial condition error

We also tested the inverse method using the raw initial condition error, so the set of
Ž .basis functions spans only a part 80–95%, Table 1 of the complete initial condition

error variance. We computed the sensitivity of the synthetic-OA initial state to each of
Ž .100 basis functions for all model variables 1900 total unknowns . When the model

initial conditions are corrected by the inverse solution, the model–data misfit variance is
reduced 85%, compared to the expected reduction of 91% predicted by the linearized

Žinverse. This improvement in fit is approximately the same as for the truncated and
. Ž .completely spanned initial condition error case Section 5.2 and supports the idea that

basis function completeness is not the limiting factor in fitting the data.
Fig. 4 shows the reduction in along-track model–data temperature misfit to illustrate

the performance of the inverse in fitting the model to the data as a function of time and
layer. The major differences between the synthetic ‘observed’ and modeled measure-
ments are near the frontal crossings. The size of the differences between the dotted and
thick black line is an indication of the strength of non-linearity. We chose sufficiently

Ž .large spatially constant elements for s 38C and 0.2 psu to keep the step-wise-non-lin-
Ž .earity small Section 4 .

We again tested for convergence towards the true solution by computing the
Ž .reduction in model–data field error variance defined in Section 5.2 . Fig. 5 shows the

Žfield error variance for temperature as a function of day and layer for the base run OA
.initial conditions , persistence of the OA and the inverse solution iteration. The inverse

solution is effective at reducing the field error variance by typically a factor of two or
Ž .more in the fitting interval days 0 to 3 . The results are similar for salinity and velocity.

This shows that for reasonable strength of the non-linearity the fitting procedure works
and is converging towards the true solution. We iterated a second step and achieved an

Žadditional misfit variance reduction of 64% compared to 68% predicted by the linear
.inverse . But as can be seen in Fig. 5 there was little reduction in field error variance. So

even though the model–data fit was significantly improved, the model state estimate was
not improved. This is similar to results in Section 5.2, where the initial condition error
was completely spanned by the basis functions but improved data fit did not improve
model state. This suggests that there is insufficient data to drive the estimate any closer
to the true initial condition, although many statistical assumptions affect the fit.
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Ž .Fig. 4. Twin experiment: time series of normalized temperature model–data misfit normalized by 38C
Ž . Žfollowing the cruise track of the Initialization Survey for top to bottom model layers 1 to 5 each offset by a

.constant value . Thin line is model–data misfit when initializing run from a twin OA of the Initialization
Survey synthetic hydrographic data. Thick line is misfit predicted from the linear inverse solution. Dotted line
is actual model–data misfit after adjusting initial conditions. The differences between predicted and actual
misfit indicate non-linearity in the model response and are concentrated near the frontal crossings.

5.4. Forecast skill

We next examined the skill levels of the forecast from adjusted initial conditions of
Section 5.3 in the time interval of independent data. We use persistence of the
Initialization Survey OA as the baseline skill to beat. As shown in Fig. 5, the model
forecast generally beats persistence on day four and five of the forecast, corresponding
to the first legs of the zig-zag forecast. By day 6, however, the model run does not beat
persistence in any layer. Longer term forecasts also did not exhibit any appreciable skill.

If we use only the Zig-Zag Survey ‘data’ samples to verify the field forecast skill
shown by the model for days 4 and 5, we find that the along-track measure of skill is not
better than the persistence forecast even though the field is better. The sparsely sampled
data of the zig-zag track is inadequate to show the forecast skill. Obviously, the one
realization studied here cannot produce a verdict about the usefulness of limited
verification data. But the one forecast result shown here using ‘identical twin’ experi-
ments indicates that the limited non-synoptic validation data in this rapidly evolving

Žfrontal realization may be inadequate for revealing forecast ‘skill’ at least by our
.measure . Perhaps satellite data or rapid aerial XBT surveys which can provide more

complete spatial coverage in short time intervals could do better in future validation
studies.
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Ž . ŽFig. 5. Twin experiment: temperature ‘field error variance’ Section 5.2 in the entire data domain for thin
. Ž .line persistence of the Initialization Survey OA, thick line model run initialized from the Initialization

Ž . Ž .Survey OA, dotted line first iteration model run initialized with the inverse solution and dashed line second
Ž .iteration model run initialized with the inverse solution for top to bottom layers 1–5. Note the differing

scales on the abscissas. The time interval from 0–3 days corresponds to the fitting interval. The time interval
from 3–6 days corresponds to forecasting independent data.
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6. IFF August 1993 dataset experiments

The three hydrographic surveys taken in the IFF in August 1993 provide us with
several scenarios of hindcasting and forecasting:

Case 1: Fit model to Initialization Survey.
Case 2: Forecast Zig-Zag Survey from Case 1.
Case 3: Forecast Validation Survey from Case 1.
Case 4: Fit model to Initialization and Zig-Zag Survey.
Case 5: Forecast Validation Survey from Case 4.
Case 6: Fit model to Zig-Zag Survey.
Case 7: Forecast Validation Survey from Case 6.
Case 8: Fit model to Zig-Zag and Validation Surveys.
Cases 1, 4, 6, and 8 correspond to hindcasts of 3-day, 6-day, 2-day, and 6-day time

intervals, respectively. These cases provide tests of the fitting procedure, the consistency
of model physics with nature, and the strength of the non-linearity of the system. They
also provide initial conditions for Cases 2, 3, 5, and 7 that correspond to forecasts
Ž .executed retrospectively into data-independent intervals. Although verification data is
non-synoptic, the four forecast cases correspond, respectively, to approximately 2–3 day
forecast, a 7-day forecast, a 4-day forecast, and a 4-day forecast in the most energetic
region of the IFF.

6.1. Case 1. Fitting the Initialization SurÕey

Ž .Our first experiment Case 1 with the observations is to fit the model to the
Initialization Survey. We computed the forward problem by perturbing the initial
conditions from the OA of the non-synoptic survey. We executed one perturbed run for

Žeach of the 100 basis functions for each layer and each dependent variable temperature,
.salinity, baroclinic zonal and meridional velocity, and barotropic streamfunction . We

Ž .adjusted the diagonal of R expected residual covariance to control the step size to
ensure that non-linearity is small in the linearized inverse. With rms expected residuals
set to 38C, the misfit variance of the linear inverse approximates to within 10% the
misfit variance of the model run from the corrected initialization implying weak
non-linearity. The non-linearity of the forward problem is evident in plots of along-track
model–data misfit as the difference between the actual misfit from the corrected model

Ž .run and the misfit predicted by the linearized inverse Fig. 6 . The non-linearity is
largest at the frontal crossings. Larger values of the expected residual variance reduce
the influence of the non-linearities on the step-wise solution.

In the first case, we not only tested spatially constant elements for s but also spatially
variable elements. We first tried to set the largest uncertainty at the initial frontal
position from the OA. However, the front evolved too quickly in time for this to be
successful. We secondly used the model run to estimate the uncertainty by calculating
the non-linearity for each datum and assigning proportional uncertainty. This worked
reasonably well and decreased the misfit variance by 5–7% over the case of uniform
38C uncertainty by giving more weight to quiet regions far from the front. On the other
hand, it is complicated to describe and did not give huge improvements so we did not
use the technique in any other fit. We now discuss in more detail the results of this case.
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Fig. 6. Time series of normalized temperature model–data misfit following the cruise track of the Initialization
Ž . Ž .Survey for top to bottom model layers 1 to 5 each offset by a constant value . The misfit normalization

varies from 18C away from the front to 38C near the front. Thin line is misfit in model when initializing run
from an OA of the Initialization Survey hydrographic data. Thick line is misfit predicted from linearized
inverse solution. Dotted line is actual model–data misfit after adjusting initial conditions. The differences
between predicted and actual misfit indicate non-linearity in the model response and are concentrated near the
frontal crossings.

The first step used spatially varying s, roughly 38C and 0.1 psu near the front and
18C and 0.1 psu in the far-field. The resulting corrected initial state reduced the

Ž .normalized model–data misfit by 65% Fig. 7 . This is close to the misfit variance
reduction of 71% predicted by the inverse. The largest remaining misfits are centered
around the times of the frontal crossings as would be expected for a non-linearly
evolving field. The fact that we can fit the model at this skill level in one iteration
suggests non-linearity is not an insurmountable problem in the 3-day time scale of the
hindcast. The results of the twin experiments suggest we are converging onto the true
ocean state and that the model physics seems adequate to represent this flow.

Ž .The second iteration used spatially constant elements for s 38C and 0.1 psu and
reduced the remaining misfit variance by 33% compared to the 45% reduction predicted
by the linear inverse. The total misfit variance reduction is then 77%, approaching the
limits expected for the basis function expansion. Fitting the data more closely may lead
to spurious structure in the initialization due to fitting environmental noise in the
observations.

Ž .Additional iterations of the inverse method slightly improved the fit Fig. 7 but, as
we shall see next, did not improve the forecast skill, so the iteration procedure was
terminated.
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Ž . Ž .Fig. 7. Top Temperature and bottom salinity misfit variance of Case 1 fits of the Initialization Survey
hydrographic data. The first point corresponds to persistence of the Initialization Survey OA. The second
through fifth points correspond to the first through fourth iterations of the model fits.

6.2. Cases 2 and 3. Forecasting from Initialization SurÕey

Ž .We quantitatively evaluated the forecast skill Case 2 of the model fit of the
Initialization Survey by computing the rms temperature forecast error along the zig-zag

Ž .track. The base run OA, initial conditions had an rms forecast error of 1.258C, the first
inverse had 1.558C and the second inverse had 1.608C. This drop is in forecast skill is

Fig. 8. Time sequence of 75 m model temperature for August 14–19, corresponding to the day 0–5 of the
Ž . Ž .model fits and forecasts. Top row Initial conditions from OA of Initialization Survey. 2nd row First

Ž .iteration of Case 1 inverse solution fit to Initialization Survey. 3rd row Third iteration of Case 1 inverse
Ž .solution fit to Initialization Survey. 4th row Third iteration of Case 4 inverse solution fit to both Initialization

and Zig-Zag Surveys. Contour intervals are 18C. White is warmer than 78C, light grey warmer than 58C, dark
grey warmer than 38C and black colder than 18C.
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evident also in the qualitative behavior of the inverse solution forecast in that the model
tends to produce a zonal or northeastward flow in the center of the data domain by

Ž .August 18 and 19 Fig. 8, second and third rows , yet the observed Zig-Zag Survey
Ž .clearly shows a southeastward flow Miller et al., 1995b; Robinson et al., 1996a . These

results suggest to us that the model is able to fit the data but it is doing so at the expense
of capturing the true nature of the evolution. Because of limited initialization data, there

Žare multiple solutions that fit the observations. Adding additional data e.g., the Zig-Zag
.Survey itself can refine the choice of initialization and produce quantitative agreement

and realistic qualitative behavior. As we shall see later, the model physics do allow a fit
to both the Initialization and Zig-Zag Surveys, which argues against grossly incorrect
model physics or inadequate basis function representation.

The forecast from the OA initial conditions appeared to be more qualitatively correct
than the forecasts from the inverse solutions. This is consistent with the results of Miller

Ž .et al. 1995b who showed that quasigeostrophic forecasts launched from non-synoptic
OA initial conditions had quantitative skill if the forecast validation time is computed
based on the local time difference between the non-synoptic initialization and validation
data. Indeed, the PE model run here initialized from the OA produced the southeastward

Žcurrent 2 days after the run commenced. Thus, if one simply ascribes August 16 the day
.data was collected in the western third of the domain to the initial conditions, the 2-day

Ž .forecast for August 18 would qualitatively match the observed data Fig. 8, top row .
Even if our inverse results had exhibited qualitative forecast skill, we would not be
surprised to find reduced quantitative forecast skill during the Zig-Zag Survey because
the twin experiments showed it to inadequately sample the rapidly evolving frontal
structure. A modified design for the non-synoptic Zig-Zag survey or other synoptic

Ž .datasets SST, altimetry, aerial XBT surveys might provide better assessments of
quantitative skill measures.

Since the model fits had no apparent skill in the Zig-Zag Survey, there is no reason to
Ž .anticipate that the model has skill in the Verification Survey Case 3 which is indeed

the case here.

6.3. Case 4. Fitting the initialization and Zig-Zag SurÕeys

We next attempt to fit the model to both the Initialization and the Zig-Zag Surveys, a
time interval spanning 6 days. Rather than starting from OA initial conditions, we began

Žthe first set of perturbation runs from the first iteration of Case 1 the fit to the
.Initialization Survey alone . We ran 100 basis functions for each dependent variable in

each layer as for Case 1. We chose to use spatially constant elements for s for
Ž . Ž .temperature 48 and salinity 0.3 psu for simplicity.

Fig. 9 shows the decrease in temperature and salinity misfit variance for each of the
three iterations we performed, along with the results from OA initial conditions of Case

Ž .1 and the first iteration of Case 1 from which we launched this set of iterations . The
temperature misfit variance decreases with each iteration, while the salinity misfit
variance decreases with the first iteration but does not decrease much for the second two
iterations. After three iterations, the combined temperature and salinity misfit variance is
reduced 67% compared to the initial hindcast. This suggests the model physics are
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Ž . Ž .Fig. 9. Top Temperature and bottom salinity misfit variance of fits of the Initialization and Zig-Zag
Surveys hydrographic data. The first point corresponds to initial conditions from the Initialization Survey OA.
The second point corresponds to the first iteration of Case 1 inverse solution fit to only Initialization Survey
data. The third through fifth points correspond to the first through third iterations of the Case 4 model fits to
both surveys.

capable of representing the flow conditions in a 6-day period of a vigorous current
instability.

Because of the limited observations, mere quantitative fits might mean that the model
could converge to a dynamically incorrect initial state. This does not seem to be the

Ž .case, since the time evolution of the flow Fig. 10 compares well visually with the
Ž .expected structures seen from the individual OA’s of the two surveys Fig. 2 . The

frontal current meanders southeastward and an isolated eddy to the north of the front
moves northeastward during the 6-day time interval. This eddy was apparent in the
initial OA but its spatial structure was not captured by the survey. The model has chosen
the proper spatial scale to allow the eddy to migrate in a fashion that is dynamically
consistent with what was observed. These points suggest that the model is indeed
converging to a physically reasonable state, capturing the physical evolution of the
frontal system in the 6-day interval.
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Ž . Ž .Fig. 11. Top Temperature and bottom salinity forecast error variance for the Validation Survey hydro-
graphic data. The first point corresponds to persistence of the Zig-ZagrInitialization Surveys OA and is
indicated by the dashed line. The second point corresponds to the model forecast initialized by the OA of the
first point. The third point is the forecast from the Case 1 fit of only the Initialization Survey; this forecast,
although it has the best ‘skill’, does not represent the hammerhead instability at all. The last two points
represent the second and third iterations of the Case 4 fits of the Initialization and Zig-Zag Survey data; the
second iteration qualitatively captures the hammerhead instability, while the first and third iterations do not.

6.4. Case 5. Forecasting from Zig-Zag SurÕey

We next discuss the skill in forecasting the Validation Survey from the model fits to
the first two surveys. Fig. 11 shows the temperature and salinity forecast error variance
associated with the forecasts of several of these fits. For a baseline comparison, we show

Ž .Fig. 10. Time sequence of 75 m model temperature for August 18–23. Top row Initial conditions from OA
Ž .of Zig-ZagrInitialization Surveys blend. 2nd row Third iteration of inverse solution Case 6 fit to Zig-Zag

Ž . Ž .Survey. 3rd row Third iteration of inverse solution Case 4 fit to Initialization and Zig-Zag Surveys. 4th row
Fourth iteration of inverse solution Case 8 fit to both Zig-Zag and Validation Surveys. Contour intervals are
18C. White is warmer than 78C, light grey warmer than 58C, dark grey warmer than 38C and black colder than
18C.
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Žthe skill of the forecasts of persistence of the initial OA where the OA includes the
.Zig-Zag, weighted more strongly, and the Initialization Survey . The typical model

forecast skill is not very different from the persistence forecast. The two points on the
Ž .right of Fig. 11 are the forecast skill Case 3 of the second and third iteration of Case 2.

The two forecasts exhibit temperature forecast skill slightly better than persistence, and
salinity forecast skill that is only slightly better than the temperature results. The forecast

Ž .initialized from the Zig-ZagrInitialization OA second point on Fig. 11 has the worst
skill in this scenario but that measure might be altered if a different initial time is

Ž .specified for the non-synoptic OA an effect we did not explore .
ŽIt must be emphasized, however, that the forecast initialized from Case 1 center

.point of Fig. 11 has the highest data forecast skill in spite of the fact that the model run
Ž .not shown does not resemble the structures seen in the time sequence of OAs. Thus, a
poor initial state can accidentally generate quantitative forecast skill that is misleading.
This is likely a consequence of computing skill statistics on a front, so a smooth forecast
Ž .as in Case 1 with a frontal slope may match an observed frontal shape with higher
fidelity than a forecast which has a lot of eddy structure around the front. Thus, we
cannot ascribe much significance to this particular quantitative skill measure in our
study, although other measures of skill might yield more favorable results.

There is clearly, however, qualitative skill in the two-survey model fits that gives
substance to the quantitative verification. The hammerhead meander of the frontal

Ž . Ž .current found by Miller et al. 1995b and Robinson et al. 1996a is also found in our
forecasts here. The eddy north of the front that migrates eastward and merges with the

Ž .frontal current is also captured by the simulation Fig. 10 . Since the original forecasts
Ž .of Robinson et al. 1996a were not available for comparison with these results we

cannot state which forecasts have more skill and our confidence in such a differentiation
would be small.

6.5. Case 6. Fitting the Zig-Zag SurÕey

We also fit the model to the Zig-Zag Survey alone. This sequence commenced from
the Zig-ZagrInitialization OA. We used relatively small spatially constant elements for s

Ž .28C and 0.1 psu since the adjusted initial condition runs were very linear. The misfit
Ž .variance for the first iteration 50 basis functions was reduced 64% compared to the

predicted reduction of 69%. This shows the model is behaving linearly in the this 2-day
Ž .time interval. The second and third iterations 100 basis functions each reduced the

Žremaining misfit variance by 29 and 30%, respectively with 31% predicted misfit
.variance reduction each iteration . The combined total misfit variance reduction for the

three iterations is then 82%. The 2-day time sequence for each iteration retains
Ž .observationally believable structures Fig. 10, second row .

6.6. Case 7. Forecasting from the Zig-Zag SurÕey

The structures that develop after the 2-day model fit to the Zig-Zag Survey exhibit
Ž .the hammerhead instability described by Miller et al. 1995b and Robinson et al.

Ž .1996a . Since the 6-day fits using the Initialization and the Zig-Zag Surveys failed to
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consistently forecast a hammerhead instability, we conclude that it was crucial to have
the precise fit to the Zig-Zag Survey to obtain the observed instability. This sensitive
dependence on initial conditions is consistent with the known baroclinically unstable

Ž .dynamics of the IFF Miller et al., 1995a,b .
In spite of their appealing qualitative skill, the Case 7 forecasts of the Validation

Survey are unable to beat persistence of the Zig-ZagrInitialization OA. Again it should
be emphasized that there may be inadequate validating data to properly assess the true
skill of the forecast and because the strong temperature gradients of the frontal region
can mask differences in small-scale but energetically important structures.

6.7. Case 8. Fitting the Zig-Zag and Verification SurÕeys

We lastly explore the capability of the model to fit the Zig-Zag and Verification
Ž .Surveys. The development of the hammerhead or deep-sock intrusion is a non-linear

Ž . Ž .Fig. 12. Top Temperature and bottom salinity misfit variance of fits of the Zig-Zag and Validation Survey
hydrographic data. The first point corresponds to persistence of the Zig-ZagrInitialization Surveys OA. The
second point corresponds to the second iteration of the Case 6 model fit using the zig-zag data alone. The third
through sixth points correspond to the first through fourth iterations of the Case 8 model fits.
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Ž .baroclinic instability process Miller et al., 1995b which was forecast in real time by
Ž .Robinson et al. 1996a . However, the quantitative forecast skill shown by Robinson et

Ž .al. 1996a was limited to the deeper layers of the models because the observations had a
baroclinic tilt to the instability that the model failed to capture.

Fig. 12 shows the temperature and salinity misfit variance for each iteration of the fits
to the Zig-Zag and Validation Surveys. The major reduction of temperature and salinity

Žmisfit variance occurs in the first iteration 49% relative to the first inverse solution for
.the Zig-Zag Survey alone . By the fourth iteration the total misfit variance is reduced by

74%.
ŽThe spatial structure of the best fit to the two surveys is shown in Fig. 10 bottom

. Ž .row . Its evolution resembles the results of Robinson et al. 1996a except here the
amplitude of the instability is smaller and more realistic. The eddy north of the front,

Ž .which was absent from the forecast of Robinson et al. 1996a , is well-modeled and
retains its structure north of the hammerhead as seen in the satellite SST image of

Ž .Robinson et al. 1996a . On the other hand, the baroclinic shear of the hammerhead,
evidenced by the 25 m temperature evolving slightly upstream of the deeper tempera-

Ž .tures, was not captured by this hindcast or by the forecast of Robinson et al. 1996a,b ,
suggesting the inability of the coarse vertical resolution andror the model physics to
simulate this effect.

7. Summary and discussion

A fitting procedure was tested and applied with the Harvard PE model to non-syn-
optic hydrographic surveys of unstable current meandering of the IFF. The initial

Ž .conditions including the fields outside the data domain were adjusted with eddy-scale
basis functions to optimize the model fit to the observations, with no additional forcing
or adjustment of boundary conditions during the model runs.

The technique was first tested with an ‘identical twin’ predictability experiment. This
showed the inverse technique can successfully fit the non-synoptic Initialization Survey
data, correct a large fraction of the initial condition error, and allow the model to move
closer to the true evolution. However, although additional iterations of the fitting
procedure could improve the fit to the Initialization Survey, the model could not be
adjusted closer to the true initial state because of the limited initialization data.
Moreover, the limited verification data was inadequate to show unambiguous forecast
skill even for short 2-day forecasts which were known to have skill in the identical twin
framework.

The PE model was then fit to the observed hydrographic data from August 1993 in
several scenarios. With only a few iterations, temperature and salinity model–data misfit
variance was reduced 70–80% relative to initializing the model from a time-independent
OA. The success of the fit was supported by qualitative realism of the frontal variability

Ž .as described previously Miller et al., 1995b; Robinson et al., 1996a,b .
The model run from the optimized initialization constitutes a possible dynamically

consistent scenario explaining some of the variability seen in the IFF observations as a
meandering of the front. To the extent that the model is accurate, the observations have
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been reconstructed into a four-dimensional picture of the flow field in the area. The
results here set the stage for diagnostic analyses of the frontal baroclinic instabilities,

Že.g., using a PE analogue presently under development by P. Lermusiaux, A. Miller, N.
. Ž .Pinardi and A. Robinson of the energy and vorticity analysis EVA system developed
Ž .by Pinardi and Robinson 1986 for quasigeostrophic dynamics and applied by Miller et

Ž .al. 1995a,b to quasigeostrophically modeled IFF variations.
ŽAlthough hindcast skill increased, quantitative forecast skill measured by error

.variance was not always increased relative to the time-independent OA initialization.
Qualitative skill assessment proved necessary to distinguish the integrity of the hindcasts
and forecasts, especially the occurrence of a hammerhead baroclinic instability of the

Ž .IFF Miller et al., 1995b; Robinson et al., 1996a . Since the model was able to be
successfully fit to the hammerhead instability, the incorrect forecasts of the hammerhead
from the Zig-Zag Survey fits are most likely a consequence of inadequate initialization
data. The highly non-linear IFF variability leads to major differences in the evolution of

Ž .flow from slightly different initial states Fig. 10 . This suggests that finely resolved and
nearly synoptic hydrography is necessary in the IFF to constrain the initialization. The
successful hindcasts argue against inadequate model physics or incomplete basis func-
tions as being the major factors limiting forecast skill. The quantitative forecast skill

Ž .shown by Robinson et al. 1996a , who used an optimal interpolation technique in real
time, is comparable to what was obtained here for the hammerhead when the model was

Ž .initialized from or fit to the antecedent Zig-Zag survey.
The main difference between this method and the representor method of Bennett

Ž .1992 is our use of the truncated set of basis functions. An adjoint model can give the
grid point structure of the data sensitivity in the forward problem, but using smoothing

Ž .assumptions i.e., a covariance matrix similar to those used here should lead to similar
solutions. Due to non-linearity, the small-scale structure of the sensitivity is often less
reliable than the large-scale structure. This is a justification for only fitting the larger
scale structures.

An ocean model is a valuable tool for the interpolation and interpretation of data, as
well as practical prediction problems, but it is dependent on obtaining adequate data for
judging model quality. The techniques tested here could easily accommodate other data
types, but the best type of data for constraining the model initializations and for testing
forecasts skill would appear to be finely resolved synoptic hydrographic surveys as
could be obtained from aerial XBT surveys. For this particular IFF dataset, there are also
drifter observations, current meter observations, and a satellite SST image which can be
used in future applications of this technique to improve the fits and forecasts. Higher
vertical resolution in the model is of greatest priority in improving the details of the
model fit, especially the baroclinic structure of the hammerhead instability.
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