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Abstract

The regional ocean modelling system (ROMS) is a new generation ocean general circulation model that

is rapidly gaining favour in the ocean modelling community. The tangent linear and adjoint versions of

ROMS have recently been developed, and a new suite of tools that utilize these models for a variety of
applications are now available to the ocean modelling community. In this paper we will describe the tangent

linear and adjoint components of ROMS, and present examples from the tools that are currently available

to ROMS users. In particular we will consider the finite time eigenmodes and the adjoint finite time ei-

genmodes of the tangent linear propagator, the singular vectors of the propagator, and its forcing singular

vectors and stochastic optimals. The pseudospectra of the tangent linear resolvent matrix are also con-

sidered. Examples of each type of calculation will be presented for a time evolving double gyre ocean

circulation in a rectangular ocean basin.
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1. Introduction

The regional ocean modelling system (ROMS) is a new state-of-the-art model that can be
configured for any region of the world ocean ranging from local to basin scale. The numerics of
the model are described in detail by Shchepetkin and McWilliams (2003), and the model already
has a large user base. ROMS has been used to model the circulation in a variety of different
regions of the world ocean (e.g. Haidvogel et al., 2000; Malanotte-Rizzoli et al., 2000; She and
Klinck, 2000; Di Lorenzo et al., 2004; MacCready and Geyer, 2001; Penven et al., 2000, 2001a,b;
Marchesiello et al., 2002).
This paper describes a suite of powerful new tools now available for ROMS that are based on

the tangent linear and adjoint versions of the model. We will describe what essentially amounts to
an end-to-end ocean prediction and analysis system that can be used in any region of the global
ocean. Before doing this, however, it is useful to briefly review some of the applications of tangent
linear and adjoint models to date in meteorology, oceanography and the climate modelling.
It has long been recognized that a tangent linear model and its associated adjoint are powerful

tools for analyzing numerous aspects of model sensitivity and the dynamics of flow fields.
However, it is only with the fairly recent advent of fast multiprocessor computers that the full
potential of these tools has been realized in complex systems and for operational applications.
For the discrete dynamical systems described by numerical models, the tangent linear model

provides the Jacobian of the dynamical operators that are tangent linear to a solution trajectory of
the nonlinear system. The adjoint of this Jacobian operator provides information about the
sensitivity of the system to variations in the model state vector, boundary conditions or model
parameters. In fact any linear problem that can be expressed in terms of finding the extrema of a
suitably defined scalar function of the model state vector will typically yield the adjoint Jacobian
as a necessary component of the solution. It is for this reason that the use of tangent linear and
adjoint models in geosciences, particularly in meteorology, has become so wide-spread because of
the variety of problems for which they can be used. Some examples include sensitivity analysis,
data assimilation, stability analysis, and ensemble prediction.
Some of the first applications of adjoint models in the meteorological literature are described by

Hall and Cacuci (1983) who explored the sensitivity of an atmospheric model to variations in all
of its free parameters. It can be shown that the adjoint of the tangent linear Jacobian of the model
yields information about the gradient of a suitably defined scalar function of the model param-
eters. In particular, a single integration of the adjoint model equations will yield information
about the linear sensitivity (gradient) of the chosen functional at all model grid points and
timesteps. If the function is some measure of forecast error, then the adjoint forecast model can be
used to determine the sensitivity of the final time forecast error to initial condition error (e.g.
Lacarra and Talagrand, 1988; Errico et al., 1993; Vukecevic, 1991; Rabier et al., 1996; Corti and
Palmer, 1997). The use of adjoint models for sensitivity analysis is not confined to meteorology,
and they have also been used in oceanography (Junge and Haine, 2001; Galanti and Tziperman,
2003) and for problems in climate modelling (Galanti et al., 2002).
Tangent linear and adjoint models have found most wide spread use in meteorology in the field

of data assimilation. In this case a scalar function, usually called the cost function (J ) is defined as a
measure of the squared difference between the forecast model trajectory and the available obser-
vations, and other information such as a background field (e.g. climatology or a prior model
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forecast). It was shown by Talagrand and Courtier (1987) that the gradient of J with respect to
variations in the model initial conditions can be computed from a single integration of the adjoint
forecast model. Once this gradient has been computed, the initial conditions can be adjusted to
yield a smaller value of J upon subsequent integrations of the forecast model. Thus an iterative
algorithm can be designed in which the forecast model and adjoint model are integrated alter-
nately. The forecast model initial conditions are adjusted at the start of each iteration so as to yield
a smaller value of J . The iteration process continues until the minimum of J is found which cor-
responds to the best fit between the model and the observations. For large operational numerical
weather prediction models, it is not practical to iterate to the minimum of J , so the procedure is
usually terminated after some predefined tolerance or convergence criterion is satisfied.
In its original form, this so-called 4-dimensional variational data assimilation scheme (4DVAR)

imposes the model dynamics as a strong constraint. There is a large body of literature on this
subject and it is beyond the scope of this paper to provide an exhaustive list of references. One of
the great advantages of 4DVAR, however, is that any type of observational data can be assim-
ilated into a model provided that it is a known function of the model state variables. The strong
constraint 4DVAR approach to data assimilation has also been used in oceanography (e.g. Long
and Thacker, 1989a,b; Moore, 1991; Weaver et al., 2002; Vialard et al., 2002) and in climate
modelling (Kleeman et al., 1995).
The strong constraint imposed by the model dynamics in the original formulation of 4DVAR

can be relaxed to allow for the inevitable errors and uncertainties in the model equations, forcing
fields, and boundary conditions. One very powerful variant of this approach is the so-called
method of representers described in detail by Bennett (1992, 2002). For each observation a
representer function can be computed that represents a space-time correlation function. The
representer functions are found by solving the nonlinear Euler–Lagrange equations iteratively,
and the tangent linear forecast model and its adjoint play a key role in this process. The method of
representers has been applied to a number of data assimilation problems in oceanography and
climate modelling (e.g. Bennett and Thorburn, 1992; Bennett et al., 1993; Bennett et al., 1998;
Egbert et al., 1994; Bennett, 2002). Chua and Bennett (2001) describe an inverse ocean model
(IOM) system which can be interfaced with the tangent linear and adjoint versions of different
models and used for data assimilation using the representer method. An indirect application of the
representer method is described by Egbert et al. (1994), Amodei (1995) and Courtier (1997).
Tangent linear and adjoint models can also be used to explore the stability of dynamical sys-

tems, and to understand the dynamics of perturbation growth. The traditional approach to sta-
bility analysis involves computing the eigenvalues and eigenvectors of the tangent linear model
(Pedlosky, 1979, his chapter 7). These eigenvectors represent dominant patterns of variability that
might be expected if the associated eigenvalues have a positive real part. Such eigenvector (normal
mode) analyses have been used in meteorology to understand various aspects of the large scale
circulation (e.g. Charney, 1947; Eady, 1949; Simmons and Hoskins, 1976; Frederiksen, 1982). In
general, the eigenvectors of observed and modelled circulation fields do not form an orthonormal
basis, in which case the eigenvectors of the associated adjoint model are also of interest since they
represent the optimal excitations for the corresponding eigenvectors of the tangent linear model
(Branstator, 1985). In general these two sets of eigenvectors have very different structures. Thus
the adjoint eigenvectors indicate how a particular eigenvector of the tangent linear system can be
forced or excited (Frederiksen, 1997).
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The non-orthogonality of the eigenvectors of the atmospheric and oceanic circulations has
important consequences for perturbation growth. The fastest growing of all possible perturba-
tions is the fastest growing singular vector of the tangent linear system. The study of the singular
vectors of atmospheric flows dates back to the work of Lorenz (1965), and has more recently
become a subject of intense research, driven largely by the pioneering work of Farrell (1982a,b,
1984, 1985, 1988a,b, 1989a,b, 1990) and Farrell and Ioannou (1993a,b,c,d,e,f, 1994a,b,
1996a,b,c) who have used these ideas to understand the basic mechanisms of different atmo-
spheric phenomena. The singular vectors of any forecast model circulation can be computed
directly using the tangent linear and adjoint forecast models, and a number of studies in
meteorology have demonstrated that the predictability of some aspects of the atmospheric cir-
culation can be understood in terms of singular vector growth (e.g. Palmer, 1988). There is a
growing body of literature on the singular vectors of the atmospheric general circulation (e.g.
Buizza et al., 1993; Buizza, 1995, 1997; Buizza and Palmer, 1995; Molteni et al., 1993, 1996;
Hartmann et al., 1995; Joly, 1995) that has considerably advanced our understanding of
atmospheric predictability.
Singular vectors have also been computed for the ocean. Moore and Farrell (1993) and Moore

and Mariano (1999) have explored the singular vector structure and perturbation growth in the
Gulf Stream, and Moore et al. (2002) have examined the singular vectors of a wind-driven double
gyre. Singular vectors have also proved valuable for understanding some aspects of the El Nino
Southern Oscillation (ENSO) (Moore and Kleeman, 1996, 1997a,b, 1998, 1999a,b, 2001; Penland
and Sardeshmukh, 1995a,b; Xue et al., 1994, 1997a,b, 1999; Blumenthal, 1991; Chen et al., 1997;
Thompson, 1998; Fan et al., 2000; Zavala-Garay et al., 2003), and other climate variability
(DelSole and Hou, 1999).
The singular vectors of the atmospheric general circulation are used at some operational centers

for ensemble prediction. Since the singular vectors represent the fastest growing (in the linear
limit) of all possible perturbations, they can provide valuable information about the most unstable
directions of phase space, and the most likely areas of forecast error growth. Forecast ensembles
can be created by perturbing the model initial conditions with different combinations of the fastest
growing singular vectors, and the resulting ensemble yields information about the atmospheric
probability density function, and the potential predictability of the atmosphere at different times
(e.g. Mureau et al., 1993; Molteni et al., 1993, 1996; Betti and Navarra, 1995; Buizza, 1997). These
same techniques have been explored by Moore (1999a) for generating ensembles of ocean fore-
casts, and by Moore and Kleeman (1998) for estimating the predictability of ENSO.
Lastly, we briefly mention an exciting new application of singular vectors, namely that of

adaptive observations (Palmer et al., 1998). The singular vectors of the atmospheric general cir-
culation identify regions where perturbations are likely to grow very rapidly. Thus for forecasting
it is important to minimize the initial condition errors in these regions. One way to achieve this is
by making additional observations in the regions identified by the singular vectors as regions of
rapid error growth. Based on this idea of so-called ‘‘adaptive’’ or ‘‘targeted’’ observations, two
field experiments have been performed, one in the North Atlantic (FASTEX) and one in the
North Pacific (NORPEX) during which the impact on forecast skill of additional observations
collected by aircraft in regions of rapid singular vector growth was assessed (Langland et al., 1999;
Bishop and Toth, 1999; Szunyogh et al., 1999). Similar types of experiments may prove useful for
ocean prediction, particularly on seasonal timescales in the tropics.
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From the preceding discussion, it is clear that tangent linear and adjoint model-based techniques
hold great promise for physical oceanography, and have a great deal to offer. This was our primary
motivation for developing the tangent linear and adjoint versions of the ROMS system which are
described in Section 2. A description of the various platforms/drivers that directly use the tangent
linear and adjoint codes is given in Section 3. Section 3 also includes a brief review of the theory
behind each application for those readers who are unfamiliar with these ideas. Example calcula-
tions are presented in Section 4, in which we apply the ideas of Section 3 to the classical baroclinic
double gyre circulation in a rectangular ocean basin. We end with a summary in Section 5.
2. Tangent linear and adjoint ROMS

Throughout this, and subsequent sections, we will represent the ROMS equations symbolically.
The full equations of the nonlinear, tangent linear and adjoint models can be found in Arango
et al. (2003). Here we will denote the ROMS model state vector as S which represents all of the
model prognostic variables at ocean grid points. The ROMS equations of motion can then be
represented symbolically as:
oS

ot
¼ NðSÞ; ð1Þ
where NðSÞ represents the model dynamical operators, which in general will be nonlinear.The
tangent linear form of ROMS was derived by considering small perturbations s to S, and per-
forming a first-order Taylor expansion of (1) which yields:
os

ot
¼ oNðSÞ

oS

����
S0

s ¼ As; ð2Þ
where S0 is a solution of (1), and A � oNðSÞ
oS

jS0 is assumed to be real throughout. Eq. (2) will be
referred to as the tangent linear model (TLM). The adjoint model is derived by considering the
inner-product of (2) with an arbitrary vector sy where the inner-product defines an appropriate
norm. For the applications considered in Sections 3 and 4, sy can be viewed as a generating vector
that yields unique solutions of (2) only in the state dimensions that are activated by the operator A
(Lanczos, 1961). The physical interpretation of sy depends on the nature of the problem at hand,
and is discussed in more detail in Appendix A. Since we are dealing exclusively with discrete
systems, we will use matrix–vector notation throughout, in which case an inner-product will be
denoted as syTGs, where G is symmetric positive definite and defines the norm of interest (e.g.
perturbation energy). The adjoint Ay of A in (2) is given by the bilinear identity
syTGAs ¼ sTATGsy ¼ sTGðG�1ATGÞs ¼ sTGAysy, therefore Ay ¼ G�1ATG. The inner-product of sy

with (2) yields oðsyTGsÞ=ot � sTGosy=ot � sTGAysy ¼ 0. Therefore the adjoint model can be rep-
resented symbolically as:
� osy

ot
¼ Aysy; ð3Þ
where the negative sign on the left-hand side of (3) implies integration backwards in time, and
oðsTGsyÞ=ot ¼ 0 for all solutions of (2) and (3) and is a direct consequence of the bilinear identity.
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The continuous counterpart of the adjoint equations described by (3) are derived by repeated
integration of the associated inner-product involving (2), and the adjoint boundary conditions are
chosen so as to render zero the resulting boundary integrals (see Lanczos, 1961, Section 4.17).
For many adjoint model applications it is very important to use the adjoint of the discrete

model equations rather than the discretized form of the continuous adjoint equations. As noted
above Ay ¼ G�1ATG, so for the L2-norm (G¼ I) the adjoint operator reduces to the matrix
transpose. This is the norm that we have used to derive the discrete adjoint of ROMS, although
the definition Ay ¼ G�1ATG shows that the adjoint operator for other norms can be derived from
the L2-norm adjoint by a simple linear transformation of the input variables by G and a trans-
formation of the output variables by G�1 (Ehrendorfer and Tribbia, 1997). The identity
oðsyTAsÞ=os ¼ ATsy indicates that the adjoint operator relative to the L2-norm can be computed
by multiplying each line of the TLM code by the corresponding adjoint variable, and then dif-
ferentiating with respect to the TLM variable (e.g. Long and Thacker, 1989a). This practice yields
a code that evaluates the transpose of the TLM operators. Giering and Kaminski (1998) provide
useful recipes for this operation, and have in fact developed an automatic differentiation and
adjoint model compiler. The tangent linear and adjoint versions of ROMS, however, were hand
coded using these same recipes. This option was considered preferable to using an automatic
compiler since it affords a greater understanding and control of the code structure of the resulting
models.
3. ROMS drivers

As discussed in Section 1, there are numerous very powerful applications of tangent linear and
adjoint models in meteorology, oceanography and climate modelling. One of the main motiva-
tions for developing the tangent linear and adjoint versions of ROMS was to make these appli-
cations available to the ocean modelling community by providing a series of easy to use platforms.
In this section we will describe these, and some supporting theoretical background for those
readers who are unfamiliar with the subject.
3.1. Eigenmodes of the tangent linear model

Following traditional methods, the stability of a circulation described by (1) can be explored by
computing the eigenvectors of the tangent linear matrix A in (2). These are often referred to as
‘‘normal modes,’’ and for autonomous systems (i.e. A is independent of time), the eigensolutions
are of the form s ¼ ŝert, where Aŝ ¼ rŝ. However, in general the eigenmodes of A rarely form a
normal set, except for particular choices of norm. If the real component of at least one of the
eigenvalues r is positive then the system is asymptotically unstable and the amplitude of all
perturbations will grow without bound.
Integral solutions of (2) can be written as sðtÞ ¼ Rð0; tÞsð0Þ, where Rð0; tÞ is called the propa-

gator of (2), and the notation Rðt1; t2Þ refers to an integration forward in time for the interval
½t1; t2	. For autonomous systems the propagator can be written as Rð0; tÞ ¼ eAt. In this case, the
eigenvectors of A and R are identical, while the eigenvalues of R are given by ert.
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For non-autonomous systems (A ¼ AðtÞ), the propagator cannot, in general, be written as a
simple exponential function of A. In this case, the eigenvectors of Rð0; tÞ depend on the time
interval t and the time evolution of S0 over this interval. These eigenvectors are often referred to as
the ‘‘finite time normal modes.’’ Since they do not form an orthonormal set, to avoid any con-
fusion we will refer to them as finite time eigenmodes (FTEs).
The eigenvectors of the propagator Rð0; tÞ for either an autonomous or non-autonomous

ROMS circulation can be computed iteratively. A single integration of an arbitrary perturbation
state vector u forward in time over the interval ½0; t	 by the TLM (cf. Eq. (2)) is equivalent to the
matrix–vector product Rð0; tÞu. By combining forward integrations of the TLM with the Arnoldi
algorithm (Golub and van Loan, 1989; Sorensen, 1992), it is possible to compute a portion of the
eigenspectrum of Rð0; tÞ. In practice, the public domain software package ARPACK (Lehoucq
et al., 1997) can be used to do this via the routine dnaupd (see www.caam.rice.edu/software/
ARPACK).
3.2. Eigenmodes of the adjoint tangent linear model

The eigenvalues of A and Ay are identical and occur in complex conjugate pairs. The eigen-
vectors of Ay are of interest because they represent the optimal excitations of the eigenvectors of A
with corresponding complex conjugate eigenvalues. We will denote by frn; ŝng and fkn; ûng the
{eigenvalue, eigenvector} sets of A and Ay respectively, where kn ¼ r�

n, and * denotes the complex
conjugate. It is easy to show that:
ûHmGŝnðrn � k�
mÞ ¼ r̂Hm ŝnðrn � k�

mÞ ¼ r̂Hm ŝnðrn � rmÞ ¼ 0; ð4Þ
where r̂m ¼ Gûm are the eigenvectors of AT, and superscript H denotes the conjugate transpose.
For n ¼ m we have rn ¼ rm while for n 6¼ m we require r̂Hm ŝn ¼ 0. Eq. (4) is an expression of the
biorthogonality between the eigenmodes of A and Ay.
To understand the physical relationship between the eigenmodes and adjoint eigenmodes,

consider an initial value problem in which an arbitrary perturbation sð0Þ is composed of a linear
superposition of the eigenmodes ŝn, namely sð0Þ ¼

PN
n¼1 anŝn ¼ Ea where E is the matrix whose

columns are the eigenvectors ŝn, and a is the vector of amplitudes an. Furthermore, assume that
the perturbation has unit norm, sð0ÞTXsð0Þ ¼ 1 where X is symmetric positive definite, and X and
Gmay define the same or different norms. According to (4), the amplitude ak of the kth eigenmode
is ak ¼ r̂Hk sð0Þ=ð̂rHk ŝkÞ. The unit-norm perturbation sð0Þ that maximizes the amplitude ak of the kth
eigenmode can be found by maximizing the Lagrange function L given by
L ¼ a�kak þ vðsð0ÞHXsð0Þ � 1Þ ¼ a�kak þ vðaHEHXEa � 1Þ; ð5Þ
where v is an unknown Lagrange multiplier. At the extrema of L we have oL=oa ¼ 0 and
oL=ov ¼ 0 which yields:
vEHXðEaÞ ¼ �ak�k; ð6Þ

where �k is the unit vector with all elements zero except the kth element. Eq. (6) shows that all
elements of the vector on the right-hand side are zero except that corresponding to ak. The left-
hand side of (6) implies then that XEa (which is equivalent to Xsð0ÞÞ must be orthogonal to all the

http://www.caam.rice.edu/software/ARPACK
http://www.caam.rice.edu/software/ARPACK
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columns of E (i.e. rows of EH) except for column k. According to (4) this is a property of the
adjoint eigenmodes, so XEa ¼ r̂k and thus sð0Þ ¼ X�1r̂k ¼ X�1Gûk, showing that a linear trans-
formation of the kth adjoint eigenmode is the optimal excitation for the kth eigenmode (i.e. it is
the perturbation that has the largest projection on the kth eigenmode). The coefficient
ak ¼ r̂Hk X�1r̂k=ðr̂Hk ŝkÞ shows that the amplitude of the kth eigenmode depends on the projection of
ŝk on r̂k, and X�1r̂k is the optimal excitation for ŝk in that of all possible norms, it produces the
most rapid growth in sTXs as ŝk emerges from the evolving perturbation.
The importance of the adjoint eigenmodes becomes clear when we consider the difference be-

tween normal and non-normal systems described by the TLM (2). For a normal system,
½A;Ay	 ¼ AAy � AyA ¼ 0 and the eigenvectors of A and Ay are identical. Therefore, in this case the
optimal excitation of any eigenmode of A is a perturbation with the structure of the eigenmode
itself. For a non-normal system, ½A;Ay	 6¼ 0 and the eigenvectors of A and Ay are different. In this
case, the optimal excitation of any eigenmode of A can have a very different structure when
compared to the eigenmode itself, depending on the inner-product that defines Ay.
It is therefore often desirable to compute the adjoint eigenmodes of the TLM for a circulation

of interest. The biorthogonality relation (4) shows that they are required if the projection of a
perturbation onto a particular eigenmode of A is desired. In addition, the adjoint eigenmodes
reveal the structures of perturbations that will be most effective for exciting the corresponding
eigenmodes of A. In sequel we will assume that the adjoint operator Ay was derived relative to the
L2-norm as described in Section 2. Therefore the adjoint of the TLM will be described by the
transposed propagator RTðt; 0Þ where the notation RTðt2; t1Þ indicates that the adjoint model is
integrated backwards in time over the interval ½t2; t1	.
The eigenvectors of the adjoint propagator RTðt; 0Þ can be computed in an analogous way to

those of Rð0; tÞ by noting that a single integration of an arbitrary perturbation state vector u
backward in time over the interval ½t; 0	 by the adjoint TLM of ROMS (cf. Eq. (3)) is equivalent to
the matrix–vector product RTðt; 0Þu. The ARPACK routine dnaupd can be used to compute a
subset of the required adjoint eigenmodes in an iterative manner.

3.3. Singular vectors

While the eigenvalues of A are traditionally viewed as a measure of the asymptotic stability of
the system, they are not always the best measure of the ability for perturbations to grow. As noted
in Section 3.1, the eigenvectors of A are typically non-orthogonal for realistic ocean circulations.
This is an important characteristic of a non-normal system. The non-orthogonality of the ei-
genvectors of A implies that each eigenvector has a non-zero projection on other members of the
spectrum. In this case it is possible for linear interference of the eigenvectors to produce transient
perturbation growth, even when all of the eigenvectors are themselves asymptotically stable. The
fastest growing of all possible perturbations over a given time interval when measured in terms of
the growth of a given norm are the singular vectors of the propagator Rð0; tÞ. Specifically, we
consider the factor l by which the squared magnitude of a perturbation s grows over the time
interval ½0; t	:
l ¼ sTðtÞXsðtÞ
sTð0ÞXsð0Þ ¼

sTð0ÞRTðt; 0ÞXRð0; tÞsð0Þ
sTð0ÞXsð0Þ ; ð7Þ
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where X defines the norm used as a measure of perturbation growth. When Ay is defined using the
L2-norm (G ¼ I), RTðt; 0Þ represents the propagator of the adjoint equation (3). From the Ray-
leigh quotient theorem, (7) shows that the eigenvector of RTðt; 0ÞXRð0; tÞ with the largest eigen-
value is the fastest growing perturbation of the tangent linear equation (2). This is identical to the
right singular vector of Rð0; tÞ with largest singular value l1=2. The singular vectors of Rð0; tÞ are
typically a better measure of the stability of the tangent linear equation (2), and for this reason
they have been used extensively for assessing the predictability of the atmospheric circulation.
The singular vectors of Rð0; tÞ can be computed for ROMS by noting that a single integration

of a perturbation u forward in time with the tangent linear model (2) over ½0; t	, multiplication of
the result by X, followed by an integration of the result backwards in time with the adjoint model
over ½t; 0	 is all equivalent to the matrix–vector operation RTðt; 0ÞXRð0; tÞu. The implied matrix
operator RTðt; 0ÞXRð0; tÞ is symmetric, so a Lanczos algorithm (Golub and van Loan, 1989) can
be used to find select eigenvectors and eigenvalues. In practice this is accomplished using the
ARPACK routine dsaupd.

3.4. Stochastic optimals and forcing singular vectors

In general, the ocean circulation is subject to ubiquitous environmental noise forcing arising
from numerous sources, including stochastic variations in surface forcing and nonlinear back-
scatter due to internal processes within the ocean. Perturbations induced in the ocean by sto-
chastic forcing can amplify considerably depending on how non-normal the underlying tangent
linear dynamics happen to be. The sources of energy for these perturbations are the perturbation
eddy stresses usually associated with classic barotropic and baroclinic instability. However, these
sources of energy can be significant even for asymptotically stable systems. In a stochastically
forced, asymptotically stable, non-normal system in statistical equilibrium, there is a balance
between the input of perturbation energy by the stochastic forcing, the release of perturbation
energy from the basic state flow S0, and dissipation of perturbation energy. The energy sources
and sinks due to the basic state flow can also be interpreted geometrically as due to linear
interference of the non-orthogonal eigenmodes.
Consider the stochastically forced tangent linear equation:
os

ot
¼ As þ fðtÞ; ð8Þ
where fðtÞ represents the stochastic forcing, and it is assumed that A is asymptotically stable. We
will make two assumptions about the stochastic forcing f: (i) that hfðtÞi ¼ 0, where h�i is the
expectation/ensemble average operator, and (ii) that the covariance of f is separable in space and
time as hfðtÞfTðt0Þi ¼ Dðt; t0ÞC, where Dðt; t0Þ describes the temporal correlation of fðtÞ, and C is its
spatial covariance at zero time lag. Assumption (i) is not as restrictive as it may appear as a non-
zero ensemble mean of f can be absorbed into A (Gardiner, 1985, section 4.1). Consider an
ensemble of solutions sðtÞ of (8) generated with different realizations of fðtÞ drawn from the same
distribution. Under these assumptions, the stochastically induced variance VX about the ensemble
mean at some time t can be expressed as:
VXðtÞ ¼ trfZCg; ð9Þ
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where Z ¼
R t
0

R t
0
Dðt0; t00ÞRTðt; t00ÞXRðt0; tÞdt0 dt00 (Farrell and Ioannou, 1993c). For a stationary

ergodic system (as in the case where R is asymptotically stable), the ensemble mean state will be
identical to the time mean of an individual ensemble member (Gardiner, 1985, section 3.7.1), so VX

can also be interpreted as the variance of a single ensemble member about its time mean. The
symmetry of C and Z allows (9) to be rewritten as:
VXðtÞ ¼
XN
i¼1

XN
j¼1

qipjðQi � PjÞ2; ð10Þ
where fpj;Pjg are the {eigenvalue, eigenvector} pairs of C (i.e. the EOFs of the stochastic forcing
f at zero time lag), and fqi;Qig the corresponding eigenvalues and eigenvectors of Z.
The eigenvectors of Z are often referred to as the forcing orthogonal functions (FOFs) (Farrell

and Ioannou, 1993c) or stochastic optimals (SOs) (Kleeman and Moore, 1997). They form an
orthogonal set of eigenvectors, and like the EOFs of C they can be ordered according to
decreasing magnitude of the eigenvalues qi. Suppose that the stochastic forcing fðtÞ is composed of
all the SOs, and that each explains an equal fraction of the forcing variance. The SO (Q1) with
largest eigenvalue then represents the spatial pattern of stochastic forcing that accounts for the
largest fraction of stochastically induced variability in the model, given by q1=trðZÞ, about the
ensemble mean hsðtÞi. Thus Q1 represents the pattern of stochastic forcing that is most disruptive
to the tangent linear model (8) for a given ocean circulation S0. The physical meaning of (10) is
therefore very clear; the level of stochastically induced variability depends on the projection of the
EOFs of f (characterized by C) onto the SOs of the TLM. Recent theoretical calculations and
modelling by Chang et al. (2004a,b) also shows that of all possible stochastic forcing,Q1 yields the
signal with greatest predictability.
The SOs also have physical significance for an asymptotically unstable operator R since

h
R T
0

Rð0; sÞfðsÞdsi ¼ 0 for a white noise forcing fðsÞ regardless of the stability of R (Gardiner,
1985, section 4.2.6(e)). In this case, the ensemble mean �sðtÞ ¼ hsðtÞi ¼ Rð0; tÞsð0Þ, and VX repre-
sents the variance of the resulting ensemble about �s at time t. The SOs provide information about
the fraction of ensemble variance that can be explained at this time which is useful for interpreting
forecast ensembles and the inherent predictability of the forecast flow field.
The integrand of Z can be evaluated in much the same way as described in Section 3.3.

However, the time integrals in Z generally render the implicit computation of the action of Z on
an arbitrary vector very expensive computationally. If it is assumed that the stochastic forcing fðtÞ
is white in time, one of the time integrals in Z disappears. The remaining time integral can be
approximated using the trapezoidal rule, and the action of Z on a vector becomes computa-
tionally tractable. A suitable choice of semi-norm can also greatly simplify the computation of Z
(Moore et al., 2003b). Since Z represents a symmetric matrix, the SOs can be evaluated using the
ARPACK Lanczos algorithm dsaupd.
Consider again Eq. (8) but suppose now that the forcing f is constant in time. The solution of

(8) can be written as:
sðtÞ ¼ Rð0; tÞsð0Þ þ
Z t

0

Rðt0; tÞf dt0: ð11Þ
Suppose also that the initial condition sð0Þ ¼ 0. Since f is independent of time, (11) can then be
written in this case as sðtÞ ¼ MðtÞf, where M ¼

R t
0
Rðt0; tÞdt0. Of interest is the structure of the



A.M. Moore et al. / Ocean Modelling 7 (2004) 227–258 237
constant forcing f that maximizes the value of some norm, such as energy, over the time interval
½0; t	. Equivalently we would like to find f that maximizes:
k ¼ sTðtÞXsðtÞ
fTf

¼ fTMTðtÞXMðtÞf
fTf

: ð12Þ
The forcing pattern that maximizes k is clearly the eigenvector of MTðtÞXMðtÞ with largest
eigenvalue. Because of the obvious connection with the singular vectors of Section 3.3, the ei-
genvectors of MTXM are called the forcing singular vectors (FSVs) (Barkmeijer et al., 2003).
FSVs are of interest in numerical weather prediction because they can be used to generate
ensembles of forecasts associated with different possible realizations of systematic errors in model
physical parameterizations. In ocean modelling and prediction, FSVs may prove useful for
exploring the impact of systematic errors in surface forcing fields.
4. Illustrative examples: an ocean double gyre

In this section we will present example calculations that use the ROMS tangent linear model,
adjoint model, and the platforms described in Section 3.
As a general illustrative example, we consider a double gyre ocean circulation in a rectangular

basin. This circulation has been studied extensively in the oceanographic literature as a surrogate
for the subtropical and subpolar gyres of the major world oceans (see Pedlosky (1996) and Chang
et al. (2001) for excellent indepth reviews). In the present example, the model is configured in the
form a flat-bottomed, rectangular ocean basin 1000 km in longitude, 2000 km in latitude, and 500
m deep. The ROMS equations were solved on a mid-latitude b-plane centered at 45 �N with a
horizontal resolution of 18.5 km. The model consists of four equally spaced vertical levels of
thickness 125 m.
The model circulation was forced by (i) a zonally uniform, zonal wind stress of the form

sx ¼ �s0 cosð2py=LyÞ, where s0 ¼ 0:05 Nm�2 and Ly is the meridional extent of the basin, and (ii)
weakly relaxing the temperature of the water column to a simple analytical profile which is
a function of both latitude and depth, and is given by Tcðy; zÞ ¼ hðzÞð1� 3y=ðhðzÞLyÞÞ where
hðzÞ ¼ T0 þ aez=100ð10� 0:4 tanhðz=100ÞÞ, a ¼ 0:95 �C and T0 ¼ 5 �C. The following ROMS op-
tions were used in the calculations presented here: third-order upstream horizontal advection,
second-order horizontal diffusion along z-surfaces, linear bottom drag, and second-order vertical
viscosity and diffusion. The pertinent model parameters are: coefficient of horizontal eddy dif-
fusivity, 1.28· 103 m2 s�1; coefficients of vertical viscosity and diffusivity, 0.1 m2 s�1; coefficient of
bottom drag, 8· 10�7 s�1; meridional gradient of the Coriolis parameter b ¼ 2� 10�11 m�1 s�1.
No explicit horizontal viscosity was used in the model since the implicit dissipation inherent in the
third-order upstream horizontal advection scheme is sufficient to render well behaved solutions
(Shchepetkin and McWilliams, 1998). The nonlinear model equations were solved subject to no-
slip boundary conditions on velocity and no-gradient conditions on temperature at the meridional
and zonal boundaries. The tangent linear and adjoint model boundary conditions were also no-
slip and no-gradient, and in addition, zero tangent linear and adjoint fluxes of heat and
momentum were prescribed at the surface and bottom.
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Using the aforementioned forcing, the nonlinear model (1) was run from a state of rest for 50
years. Fig. 1 shows a timeseries of the basin integrated kinetic energy from the model, and
indicates that after a spin-up period of about 5 years, the model has reached a statistically steady
state. Snap-shots of the model velocity and temperature in the upper layer are shown in Fig. 2
during the first 10 days of year 51. The resulting double gyre circulation is unsteady, and during
the 10 day period shown two temperature fronts are present near the western boundary. We will
refer to these as the northern and southern front regions which are labelled N and S in Fig. 2a
Fig. 1. A timeseries of basin integrated kinetic energy from the model during the 50 year spin-up.

N

S

(a)

t= 0 days

(b)

t= 5 days

(c)

1.5 m/s 

t=10 days

Fig. 2. Snap-shots of the ocean surface temperature (contours) and surface current (vectors) every 5 days during the

first 10 days of year 51 of the model integration. The contour interval is 0.2 �C and the vector scale is indicated.
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respectively. A strong jet is associated with front S and flows north-eastwards away from the
western boundary. As the circulation evolves the two fronts merge near the central basin latitude
around day 25 (not shown). The 10 day circulation shown in Fig. 2 will be used as the time
evolving basic state in all of the calculations described below.
In addition to the ubiquitous published literature on the double gyre circulation, another

primary motivation for considering this circulation in the present context is that similar cal-
culations have been presented by Moore (1999b) and Moore et al. (2002) using a barotropic
quasi-geostrophic model. Thus some direct comparisons of the quasi-geostrophic and primitive
equation calculations can be made.
4.1. Finite time eigenmodes

As a first application of the tangent linear version of ROMS we will consider the FTEs of the
circulation depicted in Fig. 2. Recall from Section 3.1 that the FTEs are the eigenvectors of the
propagator Rð0; sÞ linearized about a time evolving circulation. For the calculations presented
here, we have chosen s ¼ 10 days, and have used the time evolving flow in Fig. 2a–c. The ei-
genvalues of the first 200 members of the FTE spectrum with largest amplitude in this case are
shown in Fig. 3a. Recall that since Rð0; sÞ represents a real matrix, the eigenvalues occur in
complex conjugate pairs. The eigenvalues with magnitudes greater than 1 represent eigenvectors
which grow in amplitude over the 10 day period, and in Fig. 3 these fall outside the shaded circle.
Eigenvectors with eigenvalues that fall within the shaded circle all decay over the interval s. In all
there are 23,328 members of the entire FTE spectrum for the current configuration of ROMS, and
the remaining 23,128 would populate the central region of the shaded circle in Fig. 3a.
The sea level associated with the real and imaginary components of the first three fastest

growing FTEs is shown in Fig. 4 which is an excellent surrogate for barotropic stream function.
The temperature and velocity structures of the FTEs exhibit similar features (not shown). The
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Fig. 3. The complex plane showing the eigenvalues r ¼ rr þ iri of the first 200 members of the FTE spectrum with

largest eigenvalue amplitude. The size of each dot is directly proportional to log10ðjmjÞ in (a) and to jak j in (b) where m
and ak are defined in Sections 4.2 and 4.3 respectively.
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Fig. 4. Contour plots of perturbation sea level for the real and imaginary components of the first three members of the

FTE spectrum with largest eigenvalue modulus. In each panel the contour interval is arbitrary, and shaded and un-

shaded regions are of opposite sign.
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eigenvalues of these FTEs are identified in Fig. 3a. The structures of the FTEs suggest that growth
is achieved through barotropic processes along the northern and southern fronts and jet that are
present in the basic state flow in Fig. 2a–c. The vertical structure of the FTEs (not shown) reveals
that growth occurs through baroclinic processes also. The structures of the FTEs shown in Fig. 4
are fairly typical of those possessed by many other members of the spectrum. The growth of the
FTEs is fairly modest however, and the amplitude of the fastest growing, ŝ1, increases by only a
factor of 1.4 over the 10 day interval s. Recall that for FTEs, there is no formal requirement for
this growth to occur exponentially in time as in the case of an autonomous system, so we cannot
assign an exponential doubling time to them.

4.2. Adjoint finite time eigenmodes

As noted in Section 3.2, the eigenvectors of the adjoint propagator RTðs; 0Þ are also of interest
for several reasons. First, courtesy of the biorthogonality relation (4) they can be used to compute
the projection of any arbitrary perturbation on the eigenvectors of Rð0; sÞ. Second, the eigen-
vectors of RTðs; 0Þ and Rð0; sÞ can be used to quantify the non-normality of a dynamical system.
Third, the eigenvectors of RTðs; 0Þ represent the perturbations that have the largest projection on
the corresponding eigenvectors of Rðs; 0Þ and at the same time maximize the growth of the L2-
norm (see the discussion surrounding Eqs. (5) and (6)). As noted in Section 2, the adjoint version
of ROMS was derived using an L2-norm. However, it is easy to show that the same adjoint model
can be used to derive the adjoint relative to other norms of interest by way of simple linear
transformations of the input and output vectors (Ehrendorfer and Tribbia, 1997) as noted in
Section 2.
As a first application of the adjoint tangent linear version of ROMS we will consider the adjoint

finite time eigenmodes (AFTEs) of the circulation depicted in Fig. 2. As in Section 4.1 we will
restrict our attention to the first 10 days of the time evolving basic state circulation shown in Fig.
2a–c. The eigenvalue spectrum of RTðs; 0Þ is identical to that of Rð0; sÞ shown in Fig. 3a. Fig. 5
shows the sea level associated with the real and imaginary components of the first three fastest
growing AFTEs. These three AFTEs have eigenvalues that are the complex conjugates of the
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Fig. 5. Same as Fig. 4 except for the AFTEs.
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FTEs shown in Fig. 4. Inspection of Figs. 4 and 5 reveals that the FTEs and their optimal
excitations, the AFTEs, have very different spatial structures. This is an important feature of non-
normal (and non-self-adjoint) systems. Thus the optimal way to excite a particular FTE with large
amplitude is to perturb the flow with a disturbance that has a structure very dissimilar to that of
the FTE. The AFTEs have sea level structures that are generally large-scale over much of the
basin, and complicated in the vicinity of the ocean jets and fronts. The large-scale components of
the first two AFTEs are reminiscent of low wavenumber adjoint barotropic basin modes, in
agreement with related quasi-geostrophic calculations described by Moore (1999b). The AFTEs in
Fig. 5 would excite the corresponding FTEs shown in Fig. 4 and at the same time maximize the
growth of the L2-norm over the 10 day interval s. The AFTEs that maximize the growth of
perturbation energy over the same time interval have very similar spatial structures (not shown).
The dissimilarity in the structure of the FTEs and corresponding AFTEs is due to the non-

normal nature of the tangent linear propagator Rð0; sÞ of (2) linearized about the time evolving
basic state circulation in Fig. 2. It is the inhomogeneities in the basic state circulation that render
the system non-normal, and in fact, except under very special circumstances, non-autonomous
systems will always be non-normal (Farrell and Ioannou, 1999). Following Farrell and Ioannou
(1999) the degree of non-normality of the tangent linear system can be quantified by considering
the dot product of the FTEs and AFTEs. Recall that for two real vectors, a and b, the dot product
is defined as a � b ¼ jakbj cos h where h is the angle subtended by the two vectors. Now suppose
that a is an FTE and b is the corresponding AFTE for the L2-norm. As a consequence of the
biorthogonality relation (4), the AFTE b will be orthogonal to all other FTEs except a. Thus the
angle subtended by b and all other members of the FTE eigenspectrum will be p=2. Non-nor-
mality is related to the non-orthogonality of the FTEs, or equivalently their degree of linear
dependence. The closer the value of jhj to p=2, the more non-normal the FTE is considered to
be ecause as h ! �p=2, the more parallel or antiparallel (i.e. the more linearly dependent) a
becomes to the other members of the FTE spectrum. In general, the FTEs and AFTEs will be
complex vectors, so h will also be complex. However, the degree of non-normality can still be
conveniently quantified using the dot product of the vectors. Following Farrell and Ioannou
(1999) we define a measure of non-normality for a particular FTE as:
mk ¼ jU�1r̂kkUTŝkj=r̂Hk ŝk; ð13Þ
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where G ¼ UUT introduced in Section 2 has now been factorized, and the notation of Sections 3.1
and 3.2 has been used.
As an example of this type of calculation, we will restrict our attention to the perturbation

energy norm. The perturbation energy equation and the form of U in this case are given in Moore
et al. (2003a). Return now to the eigenvalue spectrum depicted in Fig. 3a. The size of each point in
this figure is directly proportional to log10ðjmkjÞ for each of the corresponding eigenmodes. Fig. 3a
shows that the most non-normal FTEs characterized by large values of jmkj are typically the
damped modes of the tangent linear system in this case. We will return to this point in Section 4.3.

4.3. Singular vectors

Recall from Section 3.3 that while the AFTEs are optimal for exciting the corresponding FTE,
they are not the fastest growing of all possible perturbations. This latter class of perturbations are
the singular vectors (SVs) of the tangent linear propagator Rð0; sÞ. According to (7), the SVs are
the eigenvectors of RTðs; 0ÞXRð0; sÞ, and these computations require the use of the tangent linear
and adjoint versions of ROMS in tandem. In all of the SV calculations documented here, X was
chosen to define the perturbation energy norm.
The influence of the optimal growth time s on the SVs will be considered first. Fig. 6a shows

perturbation energy growth factors, l in (7), for the first 10 members of the SV spectrum for
s ¼ 3, 10 and 30 days. The first s days of the time evolving basic state shown in Fig. 2 were used in
each case (however only the first 10 days of the basic state trajectory are shown in Fig. 2). Fig. 6a
indicates that while l increases with s, the shape of the spectrum is similar in each case. In general,
the SV spectrum is dominated by a few members as illustrated in Fig. 6b which shows l for the
first 100 members for the case s ¼ 10 days. Beyond SV number 20 or so, the spectrum is relatively
flat, and the energy growth factors are an order of magnitude smaller than that of the fastest
growing SV.
The perturbation sea level at initial time and time s is shown in Fig. 7 for the fastest growing SV

when s ¼ 10 days. The initial SV structure is generally large-scale, and has a more complex
structure where the southern most front and jet in Fig. 2 separate from the coast. The first three
members of the SV spectrum (not shown) typically favour the southern front region, while SV
number 4 (not shown) favours the northern front region. SV number 5 and many others (not
shown) favour both regions for growth. The horizontal and vertical structures (not shown) of the
SVs as they evolve reveal that perturbation energy growth occurs via barotropic and baroclinic
processes, the source of perturbation energy being the shearing and straining flows associated with
the jet circulation. The SVs for other optimization times s up to 30 days (not shown) are quali-
tatively similar to those discussed above. The tendency for the initial SV structures to favour the
western boundary agrees qualitatively with the related quasi-geostrophic calculations of Moore et
al. (2002) who showed that this tendency was due to the interaction of short barotropic Rossby
waves with the western boundary currents.
The initial large-scale structure of the SV for s ¼ 10 days is qualitatively quite similar in some

aspects to the AFTEs shown in Fig. 5. The super exponential growth of the SVs cannot be
sustained beyond a finite time, so to is of interest to compute the projection of the SVs on the
FTEs to see which structures are likely to emerge at later times. The projection of any pertur-
bation on each member of the FTE spectrum can be computed by exploiting the biorthogonality
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Fig. 6. (a) A plot of log10 l vs. SV number for the 10 fastest growing SVs when the optimal growth time s ¼ 3, 10 and

30 days, and l is the perturbation energy growth factor of each SV over the appropriate interval s. (b) A plot of l vs. SV
number for the 100 fastest growing SVs when s ¼ 10 days.
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relation (4). If we denote an SV as p, then p can be represented as a linear combination of the
FTEs ŝ, so that p ¼

P
i aiŝi, where in general the amplitude coefficients ai will be complex. Using

(4), the projection of p on any FTE, say ŝk, as measured by the magnitude of the amplitude
coefficient is given by ak ¼ r̂Hk p=ð̂rHk ŝkÞ. Fig. 3b shows a different representation of the FTE
spectrum. In this case the size of each point is directly proportional to the modulus of the
amplitude coefficient of each FTE computed from the fastest growing SV for s ¼ 10 days (cf Fig.
7). Fig. 3b indicates that this SV projects most on the FTE shown in Fig. 4c, namely ŝ2. However,
unlike the FTE ŝ2 which has an energy growth factor of only 1.45 over the interval s, the SV of
Fig. 7 grows in energy by a factor of almost 250.
The ability of SVs to achieve and sustain such rapid transient super exponential growth is a

consequence of the non-normality of the tangent linear propagator Rð0; sÞ. The basic idea is as
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Fig. 7. Contour plots of perturbation sea level at the initial and final time s for the fastest growing SV when s ¼ 10

days. In each panel the contour interval is arbitrary, and shaded and unshaded regions are of opposite sign.
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follows. Since the FTEs are non-orthogonal, they have a non-zero projection on each other. Thus
it is possible to take the FTE ŝ2 in Fig. 4c with a large amplitude, and conceal it with a linear
superposition of the other members of the FTE spectrum. Obviously the more non-normal, or
linearly dependent, the individual FTEs happen to be, the easier it will be to conceal a particular
FTE in this way. Fig. 3b shows that the SV of Fig. 7 also has a large projection on other damped
members of the FTE spectrum, and a comparison of Fig. 3b with Fig. 3a reveals that these FTE
are relatively non-normal as measured by their values of jmj. Thus it appears that the FTE ŝ2 can
be concealed with a large amplitude by a linear superposition of other relatively non-normal,
damped FTEs. This superposition constitutes the SV of Fig. 7a. As the SV evolves, these latter
FTEs decay in amplitude and change their phase relative to ŝ2, and ŝ2 is revealed with large
amplitude.
4.4. Forcing singular vectors and stochastic optimals

As discussed in Section 3.4, the notion of singular vectors as the fastest growing perturbations
from the point of view of an initial value problem can be generalized to perturbation variance
maintained by forcing. Two cases were considered, namely, where the forcing was held constant
over some time interval s, and where the forcing was assumed to be stochastic in time with a zero
ensemble mean value. The former leads to the idea of forcing singular vectors (FSVs), while the
latter leads to stochastic optimals (SOs). Examples of both FSVs and SOs will considered in this
section.
The FSVs of the time evolving basic state circulation in Fig. 2 will be considered first, assuming

a time interval s ¼ 10 days. The eigenvalues (k in (12)) of the first 10 members of the FSV
spectrum in this case are shown in Fig. 8. The values of k can be interpreted as the perturbation
energy that the tangent linear model would possess after 10 days if subjected to a constant forcing
with unit norm with the structure of the associated FSV, and assuming a zero initial perturbation.
The shape of the FSV spectrum is similar to that of the SVs and appears to be dominated by just a
few members.
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Fig. 9. Contour plots of the zonal (sx) and meridional (sy) wind stress components of the first member of the FSV
spectrum. In each panel the contour interval is arbitrary, and shaded and unshaded regions are of opposite sign.
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The structure of the zonal and meridional wind stress component of the first member of the
FSV spectrum is shown in Fig. 9. The FSV has a structure that favours the southern front region
which is the area of growth of the first three members of the SV spectrum shown in Fig. 6b. Other
members of the FSV spectrum (not shown) favour the northern front region where SV number 5
and others are located. Thus it would appear that the FSVs are able to maximize energy growth
by continuously exciting perturbations in the regions where large sources of perturbation energy
exist by virtue of the basic state flow structure. The tendency of the FSVs to favour the western
boundary is in qualitative agreement with the findings of Moore (1999b) and Moore et al. (2002).
We will consider now the SOs of the basic state circulation shown in Fig. 2, assuming as before

a time interval s ¼ 10 days. In the examples shown here, we have assumed that the stochastic
forcing is white in time, in which case the temporal correlation function in Z of (9) is a d-function,
and one of the time integrals disappears. Recall that the eigenvalues qi of Z divided by trðZÞ
represent the fraction of stochastically induced variance that the corresponding stochastic optimal
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Qi would account for in the system if each SO was present in the forcing fðtÞ and explained equal
forcing variance. Since the matrix Z is not explicitly computed, the randomized trace estimation
technique described by Bai et al. (1995) was used to estimate trðZÞ. Fifty such estimates of trðZÞ
were computed using this method, and the mean trace (denoted trðZÞ) and standard deviation of
the trace estimates (denoted rtr) were computed. Fig. 10 shows the percentage explained sto-
chastically induced variance for each of the first 10 members of the SO spectrum. The vertical bars
associated with each point show the range of explained variance for trðZÞ � rtr. Under the
assumption that all SOs are present in the stochastic forcing and explain equal forcing variance,
Fig. 10 indicates that Q1 would account for about 5% of the stochastically induced variance, and
that collectively the first 10 SOs would account for about 18% of the stochastically induced
variance.
The structure of the zonal and meridional wind stress components of the first member of the SO

spectrum is shown in Fig. 11. As for the SVs and FSVs, the SOs favour the western boundary.
Qualitatively similar results were obtained for the FSVs and SOs for other time intervals up to 30
days (not shown).
Recall from Fig. 3 that the basic state circulation is unstable. In this case the SOs in Fig. 11

represent the patterns of stochastic forcing that would account for different fractions of the
variance at day 10 in an ensemble of stochastically forced flow realizations. If these realizations
were, for example, members of an ocean forecast ensemble, then Fig. 11 would indicate which
regions of the ocean circulation are particularly sensitive to forcing errors. This will be discussed
further in Section 5.
4.5. Quantifying non-normality of autonomous systems

The properties of the various perturbations and forcing fields presented in previous sections
depend on the non-normal nature of the tangent linear operator A in (2). In Section 4.2 we
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Fig. 11. Contour plots of the zonal (sx) and meridional (sy) wind stress components of the first member of the SO
spectrum. In each panel the contour interval is arbitrary, and shaded and unshaded regions are of opposite sign.
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discussed one means of quantifying the non-normality of the system by way of (13). In this section
we present an alternative means of quantifying non-normality which can also yield important
information about the response of the tangent linear system to forcing at different frequencies,
and about the reliability of eigenmode calculations such as those in Sections 4.1 and 4.2.
Consider again the forced tangent linear equation (8) but where now the forcing is at a single

frequency, fðtÞ ¼ hext where x is in general complex, and h describes the three-dimensional
structure of the forcing field. Assume also that the system is autonomous, and asymptotically
stable, in which case the component of the solution of (8) due to the initial condition will decay to
zero. Thus after a sufficiently long time eAt ! 0, and solutions of (8) can be written as
sðtÞ ¼ extðxI � AÞ�1h. Of interest is the ratio of the norm of the response to the norm of the
forcing which is given by ksðtÞk=kexthk6 kRðxÞk where RðxÞ ¼ ðxI � AÞ�1 is called the resolvent.
Clearly the norm of the resolvent governs the relative amplification of the system response
compared to the size of the forcing imposed on the system. As we have seen this amplification is
associated with the non-normal character of the system, so kRðxÞk is a useful measure of this
property. Contour plots of kRðxÞk vs. x for x in the complex plane are often referred to as
pseudospectra. The interested reader should consult Trefethen (1996) and Trefethen et al. (1993)
for more precise definitions of the pseudospectra and important theorems relating to them. The
transient growth of perturbations, such as singular vectors, due to the interference of non-normal
eigenmodes can be anticipated from certain properties of the pseudospectra (see Reddy et al.
(1993) for more details).
Following Trefethen (1996), it can be shown that kRðxÞk obeys the following inequality:
1

distðx;KðAÞÞ 6 kRðxÞk6 jðEÞ
distðx;KðAÞÞ ; ð14Þ
where KðAÞ denotes the eigenspectrum of A; distðx;KðAÞÞ is the distance function and defines the
shortest distance in the complex plane between the forcing frequency x and the eigenspectrum
KðAÞ; E is the matrix introduced in Section 3.2 whose columns are the eigenvectors of A; and
jðEÞ ¼ kEkkE�1k is the condition number of E. If the system is normal, the columns of E are
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orthogonal, and for the L2-norm, j ¼ 1. In this case (14) becomes an equality, and kRðxÞk simply
varies inversely as the distance of the forcing frequency from the eigenspectrum. This describes the
well known phenomena of resonance. If, on the other hand, the system is non-normal, the col-
umns of E will no longer be linearly dependent, and j may become very large. In this case the
response of the system is bounded by jðEÞ=distðx;KðAÞÞ which may be very large, even when
1=distðx;KðAÞÞ is small, by virtue of jðEÞ being large. The possibility of a large response to
forcing at frequencies distant from the eigenspectrum is referred to as pseudoresonance (Trefethen
et al., 1993) and some interesting oceanographic examples are presented in Moore et al. (2002)
and Aiken et al. (2002).
The ability of a system to pseudoresonate at frequencies far removed from an eigenfrequency is

clearly a direct consequence of the non-normality of the system. However, (14) shows that
pseudospectra also provide direct information about jðEÞ. This is also of interest because
pseudospectra indicate the sensitivity of the eigenvalues of A to small changes in the elements of A
(Trefethen, 1991). Very large values of kRðxÞk in the vicinity of the eigenspectrum are indicative
of ill-conditioning of E and the associated eigenvalues and eigenvectors should be treated as
unreliable.
Pseudospectra can be computed using the tangent linear version of ROMS as a by-product of

the eigenmode calculations described in Sections 3.1 and 4.1 using the method described by
Wright and Trefethen (2001). The eigenmode calculations of ARPACK proceed using an Arnoldi
iteration technique, which itself is achieved by using the Krylov subspace of the associated power
method to reduce the original matrix A to upper Hessenberg form. The pseudospectra of the
associated upper Hessenberg matrix H are a subset of those of A for the converged eigenvalues. If
the L2-norm is used, the pseudospectra of A (given by kRðxÞk2) are simply the inverse of the
smallest singular values of the QR factorization of H. Interested readers should consult Wright
and Trefethen (2001) for further details.
An example of a pseudospectra using ROMS and the basic state circulation of Fig. 2 will be

presented next. In this case we have used the circulation of Fig. 2a to define an autonomous
operator A. The eigenfrequencies of the first 200 members of the eigenspectrum for the resulting
autonomous operator A are shown as points in Fig. 12a. Note that several of the eigenmodes have
positive real eigenfrequency components which means that they grow exponentially. Thus we are
violating the assumption of asymptotic stability introduced above. Nonetheless, the resulting
pseudospectra reveal information about the non-normality of the system, and about the reliability
of the eigenfrequencies (and eigenmodes). Contours of kRðxÞk2 are also shown in Fig. 12a and
represent the pseudospectra of the autonomous propagator defined by the circulation in Fig. 2a.
Notice that the contour interval is not uniform, and that large values are found in the vicinity of
the eigenfrequencies as expected. The unshaded region near the origin represents the eigenfre-
quencies of eigenvectors that are considered to be highly unreliable because of the very large
values of kRðxÞk2 encountered in this region.
Recall, that if the system was normal, kRðxÞk2 would simply be described by the inverse dis-

tance function. Fig. 12b shows contours of 1=distðx;KðAÞÞ for the eigenspectrum of A. Compared
to Fig. 12b, Fig. 12a indicates that the non-normality of A leads to a considerable distortion of the
pseudospectra contours compared to 1=distðx;KðAÞÞ. The ratio of kRðxÞk2 to 1=distðx;KðAÞÞ is
plotted in Fig. 12c and gives a direct indication of the degree of non-normality exhibited by the
system since this ratio is everywhere larger than unity.



Fig. 12. Contour plots of: (a) kRðxÞk2 in the complex frequency plane where x ¼ xr þ ixi. The points represent the

eigenfrequencies of the first 200 members of the eigenspectrum of A; (b) 1=distðx;KðAÞÞ, where K represents the ei-

genspectrum of A represented by the points; (c) kRðxÞkdistðx;KðAÞÞ. The frequency axes are labelled in units of days�1.
In (a) and (b) contours values plotted are 10, 20, 30, 50 and 100, and values greater than 100 are shaded. The unshaded

region in (a) near the origin represents values very much greater than 100 and is indicative that the eigenvalues and

eigenvectors in this region are unreliable. In (c) contour values plotted are 1.5, 2, 5, 10, 20 and 30.
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An example of a pseudospectra for an asymptotically stable circulation is shown in Fig. 13. In
this case a steady barotropic double gyre circulation was considered as illustrated in Fig. 13a. The
first 200 members of the eigenspectrum of the tangent linear matrix A of (2) linearized about this
circulation are shown in the lower panel of Fig. 13b. In this case all of the eigenmodes have ei-
genfrequencies with negative real parts, although there is one eigenfrequency very close to the
imaginary axis xr ¼ 0. The upper panel of Fig. 13b shows kRðxÞk2 vs. x for purely oscillatory
forcing frequencies (xr ¼ 0), which is the case of most geophysical interest. For comparison, Fig.
13b also shows a plot of 1=distðx;KðAÞÞ vs. x for the same forcing frequencies. Due to the non-
normal character of the eigenmodes of the double gyre circulation, Fig. 13b shows that the system
response to any forcing frequency according to kRðxÞk2 is significantly larger than would be
expected from the conventional idea of resonance (given by 1=distðx;KðAÞÞ). This is particularly
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Fig. 13. (a) Contour plot of sea level for the steady barotropic double gyre circulation. Shaded regions represent de-

pressed sea level. (b) A plot of kRðxÞk2 (solid line) and 1=distðx;KðAÞÞ (dashed line) vs. x ¼ xr þ ixi when xr ¼ 0. The

lower panel shows the eigenfrequencies (r ¼ rr þ iri) associated with the first 200 members of the eigenspectrum of the

circulation in (a). Both x and r are in units of days�1.
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true for forcing with periods between 20 and 50 days (xi ¼ 0:01–0:05). In this case kRðxÞk2 is
closely related to the energy norm. For a resting ocean the eigenmodes of system (i.e. the ‘‘basin
modes’’) are orthogonal with respect to the energy norm and the system dynamics are normal.
The straining flow of the double gyre circulation in Fig. 13a destroys the orthogonality of the
eigenmodes, and it is straining flow that renders A non-normal.
5. Summary

The aim of this paper was to provide a partial review of some of the many powerful appli-
cations of tangent linear and adjoint models in oceanography, and to describe a new suite of
ocean modelling tools based on the tangent linear and adjoint versions of ROMS that are
available to the ocean modelling community at large.
In Section 4 we presented examples of the various drivers that are currently available for

ROMS that utilize the tangent linear and adjoint models. As noted in the Section 1, each of these
drivers can provide valuable information about various aspects of the ocean circulation. The
FTEs described in Section 4.1 represent the dynamical modes of variability of the perturbed
circulation, and are one measure of the stability of the basic state flow. The AFTEs of Section 4.2
are of interest because not only do they allow one to compute the projection of any arbitrary
perturbation onto the FTEs by virtue of the biorthogonality relation, but they also represent the
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optimal excitations for a particular FTE. The FTEs and AFTEs can also be used to quantify the
degree of non-normality of the linearized dynamical system.
In Section 4.3 we explored the SVs of the system. In the linear limit, these are the fastest

growing perturbations that can exist in the system for the chosen norm and optimal growth time.
The growth of SVs is typically initially much faster than suggested by the most unstable FTE, and
can be understood in terms of the linear interference of the non-normal FTEs. An extension of
these ideas to systems subject to stochastic forcing, or uncertainties in forcing, yields the SOs and
FSVs described in Section 4.4. The FSVs are the patterns of forcing that are constant in time that
yield the largest growth (in the linear limit) of the chosen norm over the chosen time interval. If
the forcing is stochastic in time, the SOs represent the patterns of forcing that account for different
fractions of the stochastically induced variance in the system.
The pseudospectra described in Section 4.5 provide information not only about the associated

non-normality of the eigenspectrum of the circulation under consideration, but also information
about the reliability of FTE and AFTE computations. In addition, pseudospectra reveal infor-
mation about the response of stable, autonomous systems to forcing at different frequencies, and
allow pseudoresonances to be identified.
The aforementioned calculations were performed with (1) linearized about an unsteady, baro-

clinic, double gyre circulation. The gravest SVs, FSVs, SOs and AFTEs indicate that this circu-
lation is particularly sensitive to perturbations near the western boundary, and in regions
characterized by straining and shearing flows. The latter observation is dynamically consistent with
what we understand about sources of perturbation energy and energy release from the basic state
via barotropic and baroclinic processes. The former observation is consistent with the findings of
related calculations using quasi-geostrophic models (Moore, 1999b; Moore et al., 2002).
All of the calculations described in this paper form the foundation of generalized stability

thoery (GST) as described by Farrell and Ioannou (1996a,b). GST is a powerful analysis tool since
it allows us to examine the stability of a wide class of flows, including time dependent aperiodic
flows, analyses which are precluded by traditional techniques based on modes alone.
The calculations presented here also have important practical applications. Some of the per-

turbations and forcing fields described in Section 3 have been used in operational numerical
weather prediction for generating forecast ensembles. Ensemble members may be generated by
either perturbing the forecast initial conditions, boundary conditions, or model physics, or a
combination of all three. One approach to ensemble generation is to perturb the model in the
directions which are known a priori to yield the largest error growth. This can be achieved by
perturbing the forecast initial conditions with SVs (Molteni et al., 1993) or by perturbing the
model forcing fields with FSVs or SOs. This is the approach adopted at ECMWF where SVs are
used to perturb the model initial conditions, and FSVs are used to perturb the model physics.
Efforts are also underway to utilize SOs at ECMWF for generating ensembles of seasonal fore-
casts using coupled models. Forecast ensembles provide information not only about the most
likely future state of the system, but also the associated uncertainty in the state, or its predict-
ability. Clearly the same approaches will prove useful for ocean forecasting and for assessing the
predictability of the ocean. A ROMS-based ocean ensemble prediction system is currently being
developed.
There are several other important uses for tangent linear and adjoint ocean models that were

mentioned in Section 1, but which are still under development for ROMS. Specifically several data
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assimilation modules will be available for ROMS in the near future that are based on strong and
weak constraint 4DVAR. These applications of ROMS will be described in future publications.
In summary, the adjoint of an ocean model essentially represents a general sensitivity operator.

Any problem that can be expressed in terms of finding the extrema of a function of the model state
variables can typically be solved iteratively using tangent linear and adjoint models. Therefore, we
anticipate that the ROMS suite of tangent linear and adjoint tools will prove useful for investi-
gating a wide range and class of scientific problems of interest to the ocean modelling community.
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Appendix A. Adjoint variables and generating functions

In this appendix, the mathematical and physical significance of the adjoint operator and
associated adjoint variable will be discussed. This is by no means an exhaustive discussion, and the
interested reader should consult other texts, such as Lanczos (1961) for an in-depth expos�e. In the
following, we will restrict our attention to the L2-norm adjoint which is identical to the matrix
transpose for vector spaces.

A.1. Vector space

Consider the n� m matrix A where n < m. There are two spaces associated with A, one of
dimension n, referred to as the N-space, the other of dimension m, referred to as the M-space.
Associated with these two spaces are two sets of eigenvectors u and v which are respectively the
left and right singular vectors of A and are related to each other according to Av ¼ ku and
ATu ¼ kv, where k are the associated singular values. Suppose that A has only p non-zero singular
values (i.e. ki 6¼ 0 for i ¼ 1; 2; . . . ; p), in which case A is said to be activated only in the subspace
described by the associated p dimensions of N -space and M-space.
Consider now the under-determined linear system Ax ¼ b. Unique solutions of this system can

be found by letting x ¼ ATy where y is called the generating vector. In this case we are now re-
duced to solving the linear system AATy ¼ b. This is a completely determined system, and from y
we can compute a unique solution x using the above relation. The nature of this solution can be
explored by noting that AT ¼ VpKpU

T
p where Up and Vp are the matrices of the p left and right

singular vectors that define the p-dimensional subspace, and Kp is a diagonal p � p matrix com-
posed of the non-zero singular values. The condition x ¼ ATy can be expressed as x ¼ Vpq where
q ¼ KpU

T
p y. The action of Vp on q shows that the solution x lies completely within the activated p-

dimensional subspace of A. The unique solution x found in this way from the generating vector y
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is referred to as the natural solution, and is orthogonal to the non-activated dimensions of A. This
property of the solution arises from the action of the adjoint matrix AT on the generating func-
tion y.
For most problems of physical interest, one might think that A will always be a square matrix,

representing a uniquely determined linear system. However, this is not always the case when A
represents a discretized linear operator. We will therefore consider the extension of the above
results to function space and differential operators.
A.2. Function space

All of the results described in Section A.1 have a corresponding analogue in continuous space
where we consider functions and operators instead of vectors and matrices. In this case we can use
generating functions, the analogues of generating vectors, to solve under-determined systems of
differential equations. To illustrate this idea, we will consider the linear barotropic vorticity
equation as a specific example of general oceanographic interest. This will also illustrate the
physical significance that can be assigned to the generating function in this case.
We denote by u ¼ ui þ vj þ wk the three-dimensional velocity vector where ðu; v;wÞ represent

continuous, differentiable functions, and it is understood that w ¼ 0 given the nature of the
system. The vertical component of relative vorticity can be expressed as q ¼ k � curl u. The linear
barotropic vorticity equation can then be written as:
oðk � curl uÞ=ot þ bj � u ¼ 0; ðA:1Þ

where b is the meridional gradient of the Coriolis parameter. Our aim is to solve (A.1) for u
subject to appropriate boundary conditions, but as it stands this equation is under-determined
since q is a scalar quantity and u is a vector. However, following Section A.1, we can find a unique
solution for u by introducing a scalar generating function /. We will define the inner-product
ff ðx; yÞ; gðx; yÞg of two arbitrary, continuous, twice differentiable functions as

R Ly
0

R Lx
0
fgdxdy

where Lx and Ly define the spatial domain. Consider the inner-product of / with (A.1). Using the
continuous form of the bilinear identity leading to (3) (the so-called Green�s identity), the adjoint
of k � curl u is given by �k �r/, in which case we write u ¼ o/=oyi � o/=oxj in order to solve
(A.1). Identifying �/ with a new scalar function w, it is clear that the velocity vector must be
written in terms of the familiar geostrophic stream function in order to find unique solutions of
(A.1). A consequence of this is that r � u ¼ 0 and q ¼ r2w, in which case we are reduced to
solving:
or2w=ot þ bow=ox ¼ 0; ðA:2Þ

which is the familiar form of the barotropic vorticity equation.
The derivation of (A.2) in this way leads to a deeper understanding of the relationship between

stream function, velocity and the vertical component of relative vorticity. Following Section A.1,
it is now clear that �w is the generating function for u which leads to unique solutions of (A.1)
only in those dimensions that are activated by the vertical component of the curl operator.
Consider now r2 · (A.2) which yields or2q=ot þ boq=ox ¼ 0. The adjoint of this equation

following the continuous analogue of the steps leading to (3) is or2qy=ot þ boqy=ox ¼ 0 which is
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identical in form to (A.2). Therefore the stream function w plays the role of qy, the adjoint vertical
component of relative vorticity. Thus w, which itself is directly proportional to pressure, corre-
sponds to qy, and is the generating function for u that leads to unique solution of (A.1) in only
those dimensions that are activated by q. So in this example the adjoint variable qy � w has clear
physical significance.
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