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ABSTRACT

Free oscillations in square, midlatitude basins with continental shelves and planetary vorticity gradients are
numerically computed using the nondivergent shallow-water equations. The topography may rend a planetary
mode into a family of basinwide modes, each comparable to the flat-bottom counterpart in frequency and
midbasin structure. This phenomenon can be interpreted in terms of coupled planetary wave-shelf wave os-
cillations. The mechanism provides an alternative to strong dissipation in explaining broadbanded planetary-

wave signals observed in tide gauge records.

1. Introduction

Barotropic free oscillations of ocean basins on a ro-
tating earth have been theoretically predicted (e.g.,
Lamb, 1932, Ch. 8) for a variety of simplified geom-
etries. For example, Longuet-Higgins and Pond (1970)
considered a hemispherical basin of constant depth as
a model of the Pacific Ocean and discussed solutions
in terms of gravity, planetary and other new types of
wave motion.

More recently, Platzman and collaborators (1978;
1981b; 1985) have developed a model world ocean with
topography and numerically calculated barotropic
normal modes of period between 8 and 96 hours.
Gravity provided the dominant restoring force for
modes with period less than about 30 hours. Longer
period oscillations were vorticity waves predominantly
trapped to strong topographic features, sometimes
coexistent with very weak planetary wavelike flow.
Platzman’s finding of no modes significantly controlled
by the planetary vorticity gradient was surprising, al-
though perhaps adumbrated by previous studies of the
strong effects of topography on vorticity waves (e.g.,
Rhines and Bretherton, 1973; Anderson and Killworth,
1977). It should be noted that the topography in Platz-
man’s model may not have been sufficiently resolved
to model these vorticity modes accurately.

Sea level records from island tide gauge stations pro-
vide the best possibility for observing basin-scale os-
cillations excited at resonance. Definitive observations
of either gravity or vorticity modes, as evidenced by
resonant peaks in power spectra, are still lacking (see
Luther, 1983, for historical background); however,
Luther (1980; 1982) presents inter-island coherence
spectra that suggest the presence of a basinwide, Pacific
Ocean, planetary mode having a period of about 5 days.
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The response is directly observable only as a broadband
peak (or shoulder) in sea-level power spectra. Conse-
quently, Luther’s estimate of Q ~ 4,' on the assump-
tion of a single resonant mode, implies quite large fric-
tional damping. A direct estimate, such as this of dis-
sipation for large-scale flow, bears strongly on oceanic
modeling assumptions.

In the light of Platzman’s computations and the
many theoretical studies of the strong effect of topo-
graphic vortex stretching on vorticity waves, Luther’s
observations seem puzzling. Are there analogues of flat-
bottom, barotropic, planetary oscillations in oceanic
basins? Is it strong dissipation or planetary mode spec-
tral density that produces the aforementioned broad-
band response? These questions have motivated nu-
merical investigations of the effects of topography on
Rossby modes using the eigencodes of Platzman (1978).
We have adapted these codes to solve nondivergent
approximations of the shallow-water equations with
high resolution over variable relief in a square basin.

We find that a particularly intriguing phenomenon
occurs when a continental shelf surrounds an otherwise
flat basin. A given, nondegenerate (singlet), flat-bottom
Rossby mode may be rent into a family of basinwide
modes, each member of which resembles the flat-bot-
tom counterpart in frequency and midocean structure.
This effect appears best interpreted in terms of coupled
planetary wave-shelf wave oscillations. We emphasize
that the effect of the shelf is a strong perturbation of

! The resonance quality Q is defined to be f/Af, 2, where fis the
free mode frequency and Af, is the resonant peak bandwidth at the
one-half power point of the freely decaying mode spectrum (see
Luther, 1982).
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the spectrum. Thus, this phenomenon is distinct from,
say, the splitting of degenerate (multiplet) normal
modes of the solid earth by weak perturbations (e.g.,
Dahlen, 1968). With moderate dissipation, the present
effect could cause peak-width Qs of resonant planetary
modes as estimated from tide gauge data to be un-
realistically small.

Model resolution here is limited to 50 km in a 4000
km square basin, so that the idealized shelf is far from
realistic. The importance of baroclinicity must also be
investigated since internal osciliations can possess fast
time scales near steep topography and in low latitudes.
However, our intuitive model of coupled oscillations
(section 4) may provide insight for the dynamics when
steeper shelves or internal oscillations are present. The
model also may be able to estimate time scales of leak-
age of planetary wave energy onto and off continental
shelves.

The following section describes two nondivergent
models for vorticity modes. Section 3 presents nu-
merical eigensolutions for these equations. A simplified
model of the response is put forth in section 4. Dis-
cussion of the results and conclusions are contamed in
sections 5 and 6, respectively.

2. Rigid-lid models of vorticity modes

Consider a closed, midlatitude, homogeneous (or
strongly stratified, as in Miles, 1974) ocean in a basin
of nonuniform depth. In Cartesian geometry, free os-
cillations satisfy the linearized, unforced, inviscid shal-
low-water equations (Gill, 1982, §9.9)

u—fo=—gn, (2.1a)
v,+fu=—gn (2.1b)
.+ (Hu)x + (Hv), =0 (2.10)

with zero normal velocity on the boundaries. Here u,
v, n are eastward velocity, northward velocity and sur-
face elevation, g is constant gravitational acceleration,
J(y) the Coriolis frequency, and H(x, y) the fluid depth.
The difficulty in solving these equations and others
derived from them lies in their nonseparability and
their nonconstant coefficients. For these reasons, nu-
merical methods are needed to obtain solutions for
realistic bathymetry.

We are here interested only in the low-frequency,
vorticity wave solutions of (2.1). In order to- filter the
high-frequency gravity waves and, perforce, the Kelvin
waves, we employ (two) rigid-lid analogues of (2.1). An
additional benefit of the rigidlid is to simplify the
model boundary condition. The primary effect of the
rigid-lid approximation is to modify the phase speeds
of waves longer than the deformation radius
= (gH)"*f~'. Flierl (1977) extensively discusses this
effect for flat-bottom situations.

Perhaps the simplest and most familiar approxi-
mation for vorticity waves in this system is quasi-geos-
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trophy (Pedlosky, 1979). Inherent assumptions are that
frequencies are much less than f, depth deviations, A
= H, — H, are linearized about a representative depth
H, and horizontal length scales of flow are small com-
pared with the radius of the earth. With the rigid-lid
assumption, these imply that (2.1) reduces to

fo (2.2)

Vi, + ﬂ¢x+ J(\P, h)=0,
hereafter designated as the rigid-lid, quasi-geostrophic

equation. The velocity streamfunction, v, is defined by
—Yy=u, Y=1, (2.3a,b)

the B-plane approximation, /= f; and df/dy = 8 (both
constant), is invoked, and the Jacobian J(4, B) = —A4,B,
+ A,B,. Let ¢ = Rele"”¢,(x, )] so that, with ¢, =0
on the boundary,
ia’nvzd’n + J(d’n By +@) =0 2.9
H,
forms a self-adjoint generalized eigenproblem in the
frequency, o, (eigenvalue), and streamfunction, ¢, (ei-
genfunction).
More generally, we can incorporate strong depth de-
viations and spatially variable Coriolis effects by ap-
plying the rigid-lid assumption directly to (2.1¢) so that

V- (Hu)=0, (2.5)
and we can define a volume transport streamfunction
-V¥,=uH, Y,=vH. (2.6a,b)

Taking the curl of (2.1a,b) and using (2.5), we have

vy, f
v.[— v.L\=
(o) +Av)-o
hereafter designated as the volume-transport equation.
Let ¥ = Re[e""®,(x, )] so that

Ve, f
j . $,,=-|=0
i,V ( 2 )+J( H)
with ®, = 0 on the boundary forms the eigenproblem
analogous to (2.4).

Discrete versions of both (2.4) and (2.8) form matrix
eigenproblems of the form

iAZ,=0,BZ,, (2.9)

where A is a real, skew-symmetric, matrix operator, B
is a real, symmetric, matrix operator and Z, is the dis-
crete vector analogue of the streamfunction. The gen-
eral form of (2.9) is analogous to Platzman’s (1978)
finite element model. Thus, (2.4) and (2.8) may be
solved using appropriate adaptations of Platzman’s
(1978; 1981a) eigencodes (see Miller, 1986, for details).
The Jacobian is discretized according to Arakawa’s
(1966) formalism, while the gradient operators are dis-
cretized with standard centered differences. Core stor-

2.7

2.8)
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age on the Cray-1 at NCAR limits us to 50 km reso-
lution of the streamfunction in a 4000 km square basin.
This results in a 6241 square eigenproblem. Eigenso-
Iutions of (2.9) yield normalized residuals which are
typically less than 107, Normalized error bounds (see
Platzman, 1981a,b) for the eigenvalues and eigenfunc-
tions are then typically less than 107'2 and 107%, re-
spectively. The numerical procedure is further dis-
cussed in section 3.

To model a continental shelf, we employ the Gaus-
sian shelf depicted in Fig. 1a, b and described by

— 2
H=H0—Dexp[—(—g—zfo—)], (2.10)

where &, is a boundary point, £ the coordinate normal
to the boundary, L = 250 km is the characteristic width
of the shelf, H, = 5000 m is the interior ocean depth
and Hy — D is the shelf depth at the boundary. The
choice of L is limited by the grid resolution. In the
corners of the basin ‘the topography is smoothed by
choosing the shallowest depths of the overlapping
shelves.

3. Numerical eigensolutions

In this section we present numerical solutions of (2.4)
and (2.8). Platzman’s (1978) world ocean, normal
modes code has been adapted to solve the problem at
hand. (Christensen’s, 1973, perturbative technique for
solving a similar shelved basin problem is inappropriate
for generating a full spectral band of solutions.) Solu-
tions of both (2.4) and (2.8) occur in conjugate pairs
corresponding to positive and negative frequency.
(Both solutions in a pair give the same real stream-
function.) The Fortran code implements a Lanczos tri-
diagonalization of an equivalent, standard matrix ei-
genproblem, formulated with the squared frequency
as the eigenvalue. The spectrum of solutions consis-
tently appears in order of decreasing frequency. Lower
frequency solutions are increasingly slow to converge.
(Expenditure of computer time increases drastically
when attempting to increase the convergence of lower
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frequency solutions.) Upon reaching a solution that
has not converged to the desired degree of accuracy
(normalized residual less than 107%), the procedure is
terminated. In a typical calculation, we compute the
first 50-200 eigenmodes and consume 5-15 minutes
of CPU time on the Cray-1 at NCAR. For further dis-
cussion of the numerical procedure see Platzman (1978;
1981a) and Miller (1986).

Calculations are carried out here in a 4000 km-
square basin with 50 km resolution for three scenarios:
(a) f~-plane quasi-geostrophic modes with a shelf, (b) 8-
plane, quasi-geostrophic modes with a shelf and (c)
volume-transport modes with a shelf. Case (a) corre-
sponds to (2.4) with = f,, 8 = 0 and depth deviations,
h = Hy — H(x, p). In case (b), (2.4) again applies but
with nonzero 3. Case (c) corresponds to (2.8) with f
= fo + By, a fully variable linear function of latitude,
and H = H(x, y). The f-plane solutions are useful for
interpreting solutions which include the g-effect.

a. f-plane quasi-geostrophy with a shelf

The quasi-geostrophic framework restricts us to
small depth deviations, A, relative to Hy. Therefore, as
an archetypical case, we consider a 3000 m deep con-
tinental shelf (Fig. 1b; (2.10) with D = 2000 m) sur-
rounding the 5000 m deep, square basin on an f-plane.

The four-fold rotational symmetry of the basin im-
plies that analytical eigenvalues of the continuous
problem are four-fold degenerate. For the discrete
problem, we find instead that distinct eigenvalues,
closely matched in frequency, appear in groups of four.
(Note that the small frequency differences between in-
dividual eigenvalues within a group are many orders
of magnitude above truncation error.) It is finite-dif-
ferencing error which removes the degeneracies. This
loss of degeneracy arises from the perturbation involved
in transforming the continuous operator to the discrete
operator. In general, perturbing a matrix with degen-
erate eigenvalues removes the degeneracy yet preserves
some measure of closeness (related to the size of the
perturbation) of the perturbed eigenvalues to the orig-

FIG. 1. Basin geometry. (a) Profile of the shelf topography from (2.10). (b) Depth contours /
for the case of a 3000 m deep shelf. Here the total depth H = Hp — h with Hy = 5000 m.
() f7H contours for the same case. Here f = f, + By with fo = 9.3 X 107557 and 8 = 2.0 X 107"

m~!s!,
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inal degenerate ones (Bunch, private communication,
1986). This interpretation is substantiated by an anal-
ogous coarse resolution (100 km) case which yielded
larger frequency differences between the nearly degen-
erate eigenvalues.

The associated eigenfunctions of each virtually de-
generate group are orthogonal to each other and to
members of other groups. Basin symmetry manifests
itself in the eigenfunctions; when rotated in 90° incre-
ments, each eigenfunction remains a solution for the
same eigenvalue.

The fundamental shelf wave group (Fig. 2) has one
amplitude maximum along and across each shelf, with
phases propagating with shallower depth on the right.
Lower frequency groups contain more amplitude
maxima, shorter wavelength phase variations, and

8.678d
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larger frequency spreads within the group (indicative
of the increase in discretization error for these smaller
scale solutions). The four modes of the fundamental
group may be linearly combined to form four new
modes, each with an overwhelmingly localized response
on one shelf region (northern, southern, western or
eastern shelf), and a minute response on the others.
Lower frequency groups may be similarly recombined,
but they cannot be so highly localized.

The trapping mechanism which localizes response
on one shelf region is anticipated from shelf-wave the-
ory. Vorticity waves on a shelf will reflect strongly from
the basin wall boundary and the seaward edge of the
shelf. The sharp changes in depth contours encountered
at shelf intersections will partially reflect and partially
transmit incident waves. One can then envision con-

2 b 8.681d
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FIG. 2. Quasi-geostrophic fplane case with a 3000 m shelf depth. The first (highest frequency)
four eigenfunctions. Above each plot is (left) the mode number and (right) the mode period in
days. The modes are normalized to unit amplitude for contouring. Solid lines are constant amplitude
in 0.2 intervals. Dashed lines are constant phase in /3 intervals. (a) Mode 1, period 8.678 days.
(b) Mode 2, period 8.681 days. (c) Mode 3, period 8.683 days. (d) Mode 4, period 8.687 days.
These solutions are degenerate analytically but not numerically. Note that the amplitude structure
on any shelf is very similar for each mode. The phases are oriented such that these four modes
may be linearly combined to produce four independent modes each of which is overwhelmingly
localized on one shelf region. Lower frequency sets of shelf modes (not shown) are less able to be

localized.
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FI1G. 3. Quasi-geostrophic 8-plane case with a flat bottom. The
fundamental mode with period 8.1 days. Contouring as in Fig. 2.

structing the shelf mode from a small number of shelf
waves in a manner analogous to the construction of a
Rossby mode in a basin (e.g., Pedlosky, 1979, p. 148).
The extent to which a group of four modes cannot be
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combined to localize response on one shelf region pro-
vides an indication of the degree to which incident
waves are transmitted around the corners. (Note that
in the continuous geometry the localized, or nearly
localized, response of a linear combination of four or-
thogonal, but degenerate, modes remains stationary for
all time. The discrete case allows the response to evolve
slowly, leaking energy onto adjacent shelves over a time
interval proportional to the inverse of the frequency
spread of the nearly degenerate group.)

b. B-plane quasi-geostrophy with a shelf

With the same 3000 m shelf depth as in case (a), we
include in (2.4) a planetary vorticity gradient which
will allow Rossby-like oscillations. Without the shelf,
the fundamental Rossby mode (Fig. 3; Pedlosky, 1979,
p. 147) has a period of 8.1 days. (The frequency ob-
tained numerically for this mode differs by less than
0.1% from the analytical value.) Without 3, the fun-

FIG. 4. Quasi-geostrophic §-plane case with a 3000 m shelf depth. Counterparts of the funda-
mental shelf modes of Fig. 2 when the basin is placed on a 8-plane. Contouring as in Fig. 2. (a)
Mode 1, period 6.7 days. (b) Mode 21, period 11.3 days. (c) Mode 6, period 8.408 days. (d) Mode
7, period 8.409 days. The g-effect perturbs the virtually degenerate set, causing it to split into two
nondegenerate modes and a virtually degenerate pair. Note that mode 1 extends into the interior,
suggesting a weak interaction with planetary motion.
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damental shelf mode period is 8.7 days (Fig. 2). With
the combined effects, the basin supports a fundamental
wave period of 6.7 days. This particular wave (Fig. 4a)
is strongly localized on the northern shelf where 8 rein-
forces the topographic gradient. Thus, the resultant
frequency is higher than that due to either effect alone.

The first five modes exhibit a progressively stronger
B-like component in the ocean interior, combined with
a strong northern shelf response which resembles f-
plane shelf-mode structures of section 3a. Modes 4 and
5 (Fig. 5b, c¢) have interior response very much like the
fundamental flat-bottom 8-mode. Modes 3 and 10 (Fig.
5a, d) also exhibit an interior response resembling the
fundamental B-mode. The appearance of more than
one frequency of response for these fundamental 8-
mode structures is remarkable.

Lower frequency modes are not easily summarized.
Some resemble pure shelf waves and some are more
aptly described as combination planetary/shelf modes.
A strong shelf response may (i) be very localized (e.g.,
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Fig. 4b), (ii) have a decaying “tail” extending into the
flat interior (e.g., Fig. 4a), (iii) connect to an interior
response which resembles a 8-mode (e.g., Figure 5c),
or (iv) connect to a more complicated interior response
(e.g., Fig. 6). Typically, interior flows interact more
strongly with response on the northern shelf than the
southern. Evidently, this is due to the sense of the to-
pographic gradient vis-a-vis 3; the tendency for phase
propagation is westward both in the interior and on
the northern shelf while the tendency is eastward on
the southern shelf.

The fundamental group of four f~plane shelf modes
(Fig. 2) has an interesting fate on the 8-plane. The 8-
effect acts as a standard perturbation which splits the
(virtual) quadruplet into two singlets and a doublet.
The northern shelf mode appears as the fundamental
mode (Fig. 4a) with frequency shifted to a higher value
than that of its /~plane analogue (namely, the linear
combination of modes from Fig. 2 which localizes re-
sponse on the northern shelf). The structural change

FIG. 5. Quasi-geostrophic 8-plane case with a 3000 m shelf depth. Four modes with strong
interior response resembling the fundamental flat-bottom 8-mode structure of Fig. 3. Contouring
as in Fig. 2. (a) Mode 3, period 7.3 days. (b) Mode 4, period 7.8 days. (¢c) Mode 5, period 8.3
days. (d) Mode 10, period 8.9 days. Note the interaction of the interior response with shelf motion
of varying structure.
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FIG. 6. Quasi-geostrophic 8-plane case with a 3000 m shelf depth.
An example of a mode with strong interior response which does not
particularly correspond to the structure of a single flat-bottom -
mode. Contouring as in Fig, 2. Mode 27, period 12.3 days.

is greatest for this wave, exemplifying the relatively
strong interaction between northern shelf waves and
interior planetary motion. The southern shelf mode
(Fig. 4b) has shifted to a lower frequency due to the
(perturbative) S-effect being in opposition to the to-
pographic gradient of the southern shelf. The eastern
and western shelf modes remain virtually degenerate
(Fig. 4c, d) with frequencies increased slightly over the
Jf-plane situation. Higher groups of shelf modes can
behave similarly unless they interact strongly with in-
terior planetary flow or other shelf-mode groups.

¢. Volume-transport flow with a shelf

Equation (2.8) allows both fand H to be fully vari-
able. For simple comparison with case (b), we employ
a linear latitudinal dependence for /= f, + 8y and first

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 16

discuss the 3000 m shelf depth (contours of f/H are
shown in Fig. Ic). The most striking new feature of
these solutions is the existerice of critical latitudes on
the eastern and western shelves (Fig. 7). Northward
(southward) of the turning latitudes the response is os-
cillatory (decaying), suggesting a structural similarity
with an Airy function. The topographic strength is
modulated by f, which acts as a slowly varying param- -
eter; shelf waves of a particular frequency may exist
only northwards of their respective turning latitude
(Miller, 1986). '

Besides the aforementioned effect, the solutions
qualitatively resemble the quasi-geostrophic, S-plane
case. Differences between the two cases are primarily
due to the stronger effect of topography (i.e., no longer
linearized) and the spatial variability of f, which reg-
ulates the local topographic strength. The former effect
causes shelf-trapped response to have smaller-scale
structure compared with quasi-geostrophic response of
similar frequency. The latter effect causes shelf waves
trapped to the northern (southern) shelf to be of higher
(lower) frequency than their quasi-geostrophic coun-
terparts of case (b). Once again, several modes (Fig. 8)
have interior response resembling the fundamental,
flat-bottom S-mode.

Decreasing the depth of the shelf (2000 and 1000 m
depths were employed) yields qualitatively similar re-
sults, although we find greater numbers of solutions
with interior structure resembling the fundamental -
mode. We also find many modes having strong interior
response which bears little resemblance to flat-bottom
f-mode structure (as in Fig. 6). It appears that the spec-
tral density of large-scale planetary-like modes is linked
to the spectral density of shelf waves with frequency
in the S-mode range, the latter increasing with topo-
graphic amplitude.

FIG. 7. Volume-transport case with a 3000 m shelf depth. Examples of barotropic shelf waves
with turning latitudes. Contouring as in Fig. 2. (a) Mode 17, period 8.00 days. (b) Mode 18,
period 8.04 days. The two modes form a virtually degenerate pair as in Fig. 4c, d. The strength
of the topographic effect varies due to the spatially variable Coriolis frequency. This results in

response structure resembling an Airy function.
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FIG. 8. Volume-transport case with a 3000 m shelf depth. Examples of modes with large-scale
interior response resembling the fundamental flat-bottom mode of Fig. 3. Contouring as in Fig.
2. (a) Mode 16, period 7.8 days. (b) Mode 19, period 8.3 days. (c) Mode 20, period 8.5 days. (d)
Mode 22, period 8.7 days. Compare with the quasi-geostrophic case of Fig. 5. Notice the effect
of the fully varying topography in causing shelf modes with higher modal structure to populate
the fundamental 8-mode frequency range.

As a summary of the volume-transport cases, we
present Fig. 9, a graphical illustration of spectral density
and strength of interior response for the volume-trans-
port eigenmodes (flat bottom, 3000, 2000 and 1000
m shelf depths). Normalizing the modes according to
the relation

- [[ e pmaxay-1, 3.0
basin

we compute a measure of their tide-gauge signal
strength in the ocean interior, namely,

I= f f ®,D*dxdy

interior

(3.2)

where the domain of integration is the 3000 km-square,
flat region of the basin. The value of I is then nor-
malized with respect to its value for the fundamental
flat-bottom mode and plotted versus mode frequency.
(Although geostrophically balanced model sea level

fluctuations are not directly proportional to ®, owing
to the spatial variability of fand H, they are approxi-
mately so in the flat interior. Thus, we may also inter-
pret I to be roughly proportional to interior-ocean po-
tential energy.)

The fascinating break-up of the flat-bottom modes
into families of large-scale planetary/shelf modes is
clearly evident in Fig. 9. Individual modes within a
family often resemble a flat-bottom counterpart and
are labeled accordingly. Those families with no con-
sistently clear resemblance are marked with (?). Oscil-
lations predominantly confined to shelf regions appear
in Fig. 9 as short lines. Thus, modes with large I are
more likely to be observable at an open-ocean tide
gauge. If two or more modes with nearly the same fre-
quency contribute to a tide gauge record, the damped,
resonant peaks may overlap, yielding a broadbanded
appearance in the resultant frequency spectrum.
Therefore, a cautious interpretation of data from tide
gauges is particularly important for vorticity modes.
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FIG. 9. Volume-transport case with various shelf heights. Graphical depiction of the strength
of interior response, I, defined in (3.2) and normalized by the fundamental flat-bottom mode
value, versus mode frequency. Large values of I correspond to strong interior response while
small values indicate the response is primarily trapped to the shelf regions. (a) Flat bottom case.
(b) 3000 m shelf depth. (c) 2000 m shelf depth. (d) 1000 m shelf depth. The emergence of a family
of modes with large-scale interior response resembling the nondegenerate flat-bottom mode (1)
of (a) is clearly evident in (b), (¢) and (d). The degenerate pair, (2) and (3), is split (in the classical,
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perturbative sense) into two separate families in (b).

Another measure of the open-ocean amplitude of
the planetary/shelf modes is the fraction of total vari-
ance individually explained by them in an expansion
of a 8-mode. Thus, we expand a flat-bottom mode,
say, O,, in terms of the planetary/shelf modes, ®,,,

0,(%,1) = T @@ m(x, V), (3.3)

and plot versus frequency the percent of total variance
absorbed (Miller, 1986, details the procedure). The fre-
quency bandwidth of a “peak” is indicative of how
rapidly currents with planetary scales may leak energy
onto shelf regions (see section 5).

Figure 10 shows the results of the expansion (3.3)
for the fundamental S-mode (Fig. 3). The structures
associated with this fundamental S-mode appear dom-
inantly in two modes of the basin with 3000 m shelf
depth. When the steeper shelves are included, the true
modes contribute smaller percentages to the descrip-
tion, and the spectral width broadens, suggesting more
rapid energy leakage onto shelves. The appearance of
two broad peaks (cf. Fig. 9d) for the 1000 m shelf depth
is surprising. The expansions of the second and third
flat-bottom modes (an analytically, but not computa-
tionally, degenerate pair) reveal that they are split into
two separate families for the case of the 3000 m shelf
depth (Figs. 11a, 12a). In the presence of steeper shelves,

this separation is less distinct (cf. Fig. 9c, d). Another
dual-peaked structure occurs in the second $-mode ex-
pansion for the 2000 m shelf-depth case (Fig. 11b).
Note that we did not reduce the scale of the flat-bottom
modes to allow for a reduction in basin size due to the
presence of the shelves.

Frequency response curves, corresponding to (2.7)
with specified forcing and dissipation, will exemplify
the production, by these shelf topographies, of broad-
bandedness in frequency space. Since the result can be
anticipated and the model is so idealized, we defer such
an analysis to future studies using realistic ocean basins.
We instead investigate the nature of these free oscil-
lations in the next section.

4. Coupled oscillator model

We seek a feasible mechanism for the rending of
nondegenerate 3-modes into families of planetary/shelf
modes in the presence of the shelf topography. Standard
perturbation theory can yield only single 8-modes, each
shifted in frequency and modified in structure. We,
therefore, propose a model of coupled planetary-wave/
shelf-wave oscillations based on the observation that
the solutions (Figs. 4-8) exhibit a tendency for interior
structure to resemble flat-bottom modes and shelf
structure to resemble topographic modes. Coupled os-
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Modal Expansion of Flat Bottom Mode (1)
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FIG. 10. Volume-transport case with various shelf heights. Percent
of total variance absorbed by each volume transport mode coefficient
in the expansion (3.3) for the fundamental flat-bottom mode. The
expansion reveals the distribution of large-scale structure with fre-
quency. Total variance absorbed by the expansion set is indicated
by a. (a) 3000 m shelf depth. (b) 2000 m shelf depth. (c) 1000 m
shelf depth. Note that the two broad peaks in (c) are also evident in
Fig. 9d.

cillator theory can qualitatively reproduce the phe-
nomenon and provide a simple, intuitive model of the
physics.

Restricting ourselves to quasi-geostrophy for this
discussion, we seek simplified solutions to (2.4) with

Modal Expansion of Flat Bottom Mode (2)
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FIG. 11. As in Fig. 10 but for the second flat-bottom mode of
original period 12.8 days. The shelf has split the degenerate second
and third flat-bottom modes into two separate families (cf. Fig. 9b).
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Modal Expansion of Flat Bottom Mode (3)
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FIG. 12. As in Fig. 11 but for the third flat-bottom mode
of original period 12.8 days.

¢» = 0 on the boundaries. Introduce the sets of solutions
(Yx, P,y and (w,, Sy) such that they satisfy the S-plane,
planetary waves case and the f-plane, shelf waves case,
respectively, i.e.,

a .
Y nV?Py+B— P, =0, 4.1
HnV Pyt B2 Pr=0 4.1
0,728, + 22 5(S,, By = 0. (4.2)
Hy

Each set forms a complete basis for the expansion of
arbitrary functions satisfying the same boundary con-
ditions in the basin. .

Let an approximate solution of (2.4) be written as

N M
¢k= z ankPn+ z bmkSm,

n=1 m=1

(4.3)

where we include only a few of the highest frequency
(or some frequency band of) oscillations of each basis
set. (The choice of this basis over any other Galerkin
truncation is motivated by the presumably small values
of N and M required for convergence.) These basis
functions are linearly independent but not orthogonal.
Substituting (4.3) into (2.4), multiplying through by
the conjugate functions, integrating over the basin, and
invoking the orthogonality relations (Rhines and
Bretherton, 1973; Miller, 1986)

[[ 2uxes ppdsdy=ium, — a)
basin

ff S,,J(S,",‘, ,'fgl—z)dxdy = [0pm, 4.5)
basin Ho

results in an (N + M) by (N + M) eigenproblem in the
frequency, o) (eigenvalue), and the expansion coeffi-
cients vector, (a,, b.)x (eigenvector), i.e.,
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2 ivn | [ J(Sm,ﬁy+f °”)P*dxdy zta, [f J(P,,f °”)P*dxdy (4.60)

e e e

X fo)
=bp— . By + - |S*dxd b | | KS), BY)Stdxdy. (4.6b
Etaffl( By mdxdy — Z‘t:ff(zﬁy) y.  (4.6b)

This may be written schematically as

an\ _ [ n
(i), =4(or),

where I" and A are Hermitian matrix operators and A\
= (g%/v1). This can be readily solved numerically using
standard EISPACK routines.

Not all solutions of (4.6) will be representative so-
lutions of (2.4). True solutions which project strongly
on the basis set of (4.3) will have counterparts under
the approximation. But since (N + M) eigensolutions
will necessarily be present, some approximate solutions
will be spurious due to the 1ncomplete expansion basis
in (4.3).

As an example, consider the 3000 m shelf depth of
section 3b. In this case, the P, are the flat-bottom, §-
plane Rossby modes and the S, are the f-plane shelf
modes of section 3a. Solutions for N = 6 (the first six
flat-bottom modes) and M = 24 (the first six groups of
four shelf modes) have many features in common with
the full solutions. (Smaller values of N and M result
in qualitatively, but less quantitatively, satisfactory so-
lutions.) For instance, the splitting of the fundamental
shelf-wave group via the §-plane perturbation is shown
in Fig. 13, which may be directly compared to Fig. 4.
The eigenfunctions are almost identical. Frequency er-
rors are all less than 4 percent. An example of the gen-
eration of a family of 8-modes is shown in Fig. 14,
which may be directly compared to Fig. 5. The struc-
tural similarity between the model solutions and true
solutions is remarkable. Errors in frequency are all less
than 3 percent. Many of the other model solutions for
this case also correspond well to their full solution
counterparts. The planetary-wave/shelf-wave coupled
oscillator model thus provides a successful interpre-
tation of the full solutions.

4.7)

5. Discussion

In the presence of an imperfectly reflecting bound-
ary, flat-bottom, 3-plane normal modes experience an
extension of their influence in frequency space. No
longer confined to single frequencies, these modes ap-
pear as families (Figs. 5 and 8) whose members have
frequencies near the original flat-bottom counterpart.

This break-up may be interpreted as coupled, plane-
tary-wave/shelf-wave oscillations.

‘Intuitively, one expects that (4.2) will apply most
strongly over the shelf, with (4.1) holding dominantly
in the interior. A simple model of coupling shelf motion
to the open ocean is

LR _
6tv P+ﬂ P— B S 5.1)
2 foh _ th
3 V S+J( Ho) J(P,—HO), 5.2)

where (5.1) holds in the interior and (5.2) holds on the
shelf region. The left-hand sides represent the lowest-
order balance, while the right-hand sides represent
higher-order coupling. In particular, we anticipate the
dominant coupling effect to be a 8-induced shelf-wave
forcing of the interior flow and a topography-induced
planetary-wave forcing of motion on the shelf, respec-
tively (cf. Rhines and Bretherton, 1973, pp. 599-600).
These equations bear the form of coupled oscillators;
the normal modes of such coupled systems are usually
approximated as linear combinations of solutions of
the decoupled system. This qualitatively explains the
repeated S-mode structures in solutions of the full
equations, and motivates the expansion in (4.3). [So-
lutions of (4.6) might be taken as the starting point of
an iterative scheme for generating solutions for topo-
graphic domains which are computationally unresolv-
able.}

Much like coupled oscillator phenomena of classical
physics (e.g., Sommerfeld, 1952), which can be gen-
eralized to multiple degree-of-freedom systems, plan-
etary waves of the interior may exchange energy with
shelf waves of similar frequency. The spectral ‘“band-
width” of a family of planetary/shelf modes provides
a measure of the efficiency of energy leakage from the
interior to shelf regions. For example, in the case of
the 3000 m shelf depth, we may estimate the time scale
of destruction (by the shelf topography) of the funda-
mental, flat-bottom, 8-mode as

1

1
E(E]) =~ 40 days, (5.3)

T~
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FIG. 13. Quasi-geostrophic 8-plane case with a 3000 m shelf. Solutions of the coupled planetary-
waves/shelf-waves model (section 4) which may be directly compared to Fig. 4. (a) Mode 1, period
6.8 days. (b) Mode 19, period 11.45 days. (c) Mode 6, period 8.68 days. (c) Mode 7, period 8.69
days.

where of ~ (0.128-0.115) cpd is the frequency band-
width for modes with similar interior structure (Figs.
8, 10a, 9b). This break-up can be visualized with an
initial value problem. We expand the fundamental flat-
bottom mode in a sum of planetary/shelf modes, as in
(3.3), and allow it to oscillate with natural frequencies.
This is shown in Fig. 15 as a time sequence. The initial
large-scale pattern leaks energy onto the northwestern
shelf region over a 40 day time scale, as anticipated
above. The region of the shelf onto which energy leaks
is not easily anticipated by inspection of mode struc-
tures in Fig. 8.

The resonance curves for a given forcing function
will be much more spikey in the model ocean interior
when a shelf is present. Moderate dissipation will
broaden the spikes, causing the peaks associated with
a family of modes (e.g., Fig. 9b—d) to overlap, forming
a broadbanded peak. This will be particularly notice-
able for a family that is relatively isolated in frequency
from other families. The oceanographically relevant
point is that a family of modes excited at resonance

may appear as a broadband peak in sea level spectra,
particularly when the peak is obscured by ambient
noise or is poorly resolved due to record length limi-
tations. If a frictional damping parameter is then es-
timated under the assumption that a single flat-bottom
mode is present, it will be overestimated. Although the
results of this idealized model cannot be directly applied
to Pacific Ocean tide gauge observations of vorticity
mode signals (Luther, 1980; 1982), such an analysis
will be possible after Pacific basin geometry and free-
surface effects are incorporated.

Realistically, other effects may alter the scenario re-
vealed by the models of section 2. The most obvious
weakness is our inability to employ a realistically nar-
row shelf, O(10-100 km), owing to limited resolution.
Presumably, the shelf oscillations are much more
weakly coupled to interior planetary modes in that sit-
uation, although the solutions of section 3c indicate
that a steeper shelf produces a stronger interaction than
a less steep one. Nevertheless, in companion compu-
tations of normal modes with a midocean ridge (and
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FI1G. 14. As in Fig. 13 but for modes with interior response resembling the fundamental flat-
bottom modes. Compare to Fig. 5. (a) Mode 3, period 7.4 days. (b) Mode 4, period 7.9 days. (c)
Mode 5, period 8.5 days. (d) Mode 10, period 9.0 days. Notice the remarkable degree of similarity
of shelf region response and interior structure between the true and approximate solutions.

no shelf), a similar situation occurs. We find that fam-
ilies of B-like sub-basin modes (Rhines, 1969; Anderson
and Killworth, 1977) occur on either side of the ridge.
Other generic types of topography (rough bottoms, iso-
lated seamounts), however, often only weakly perturb
the large-scale, planetary-mode spectrum; the coupling
between planetary motion and these types of topo-
graphic waves is evidently weak (Miller, 1986).

Further complications arise when considering the
possible effects of stratification. The turning latitudes
observed in the solutions of section 3¢ may instead be
places where scattering into or from internal Kelvin
waves occurs (Allen and Romea, 1980; Suginohara,
1981). Also, equatorial regions are a waveguide for
baroclinic waves with frequencies and phase propa-
gation similar to barotropic planetary modes. Coupling
of internal to external flows via topography (e.g.,
Rhines, 1970) or Coriolis effects (Miles, 1974) may be
more than a weak perturbation to basin-scale waves.
Further studies of these effects are needed to fully in-
terpret Luther’s (1980; 1982) observations.

6. Conclusion

Models of low-frequency response in ocean basins
typically represent boundary regions as a vertical wall.
We have shown that the presence of a continental shelf
causes the linear response in the flat interjor, far re-
moved from the boundary region, to be very different
than that for a completely flat-bottomed ocean. The
spectrum of eigenmodes having strong interior response
becomes more dense. There arise eigenmode families,
each with interior structure corresponding to a flat-
bottom #-mode, grouped in frequency bands near the
flat-bottom counterpart frequency. We interpret this
to be a strong resonance between shelf oscillations and
planetary modes. Our proposed mechanism of coupled,
planetary-wave/shelf-wave oscillations explains how
interior response can resemble flat-bottom modes at
multiple frequencies. Since the original flat-bottom
mode is nondegenerate, the appearance of a family of
modes is distinct from the splitting of multiplets (de-
generate eigenmodes) into sets of singlets (perturbed
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FI1G. 15. Time sequence of modal representation of the fundamental flat-bottom mode for the
3000 m shelf-depth volume-transport basis as in (3.3). Ninety-seven percent of the variance of
the flat-bottom mode is absorbed by this expansion which includes 61 modes, not many of which
had significant amplitude (cf. Fig. 10a). Contour intervals of streamfunction amplitude are constant
from plot to plot. (a) Time = 0, Amplitude = 1.00. (b) T = 8 days, Amp = 0.79. (c) T = 24 days,
Amp = 0.60. (d) T = 36 days, Amp = 0.52. The interior portion of the flow oscillates primarily
at the four frequencies corresponding to the modes of Fig. 8. Energy leaks relatively rapidly onto
the northwest shelf region. In the case of the 2000 m shelf depth the leakage occurs on the

southwest shelf region.

nondegenerate eigenmodes) by weak perturbations.
The present situation involves a strong perturbation of
the spectrum of solutions.

Attempts to observe basinwide vorticity modes may
be confounded by this topographic effect. Presumably,
moderate dissipation would render a band of resonantly
excited modes into a “broadband” power spectral
structure near the frequency predicted by flat-bottom
theory for a single mode. Estimates of dissipation and
(1/Q) from an improperly interpreted broadband peak
might therefore be unrealistically large.
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