Bromirski, P. D., R. E. Flick and A. J. Miller, 2017:
Storm surge along the Pacific Coast of North America
Journal of Geophysical Research-Oceans, 122, 441-457.
Abstract.
Storm surge is an important factor that contributes to coastal flooding and erosion.
Storm surge magnitude along eastern North Pacific coasts results primarily from
low sea level pressure (SLP). Thus coastal regions where high surge occurs identify
the dominant locations where intense storms make landfall, controlled by storm
track across the North Pacific. Here storm surge variability along the Pacific coast
of North America is characterized by positive non-tide residuals at a network of tide
gauge stations from southern California to Alaska. The magnitudes of mean and
extreme storm surge generally increase from south to north, with typically high
amplitude surge north of Cape Mendocino and lower surge to the south. Correlation
of mode 1 non-tide principal component (PC1) during winter months (Dec.-Feb.)
with anomalous SLP over the Northeast Pacific indicates that the dominant storm
landfall region is along the Cascadia/British Columbia coast. Although empirical
orthogonal function spatial patterns show substantial interannual variability,
similar correlation patterns of non-tide PC1 over the 1948-1975 and 1983-2014
epochs with anomalous SLP suggest that, when considering decadal-scale time
periods, storm surge and associated tracks have generally not changed appreciably
since 1948. Non-tide PC1 is well-correlated with PC1 of both anomalous SLP and
modeled wave height near the tide gauge stations, reflecting the inter-relationship
between storms, surge, and waves. Weaker surge south of Cape Mendocino during
the 2015-16 Nino compared with 1982-83 may result from changes in Hadley
circulation. Importantly from a coastal impacts perspective, extreme storm surge
events are often accompanied by high waves.
Reprint (pdf)